Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/9/10.1063/1.4930832
1.
1.V. K. Pecharsky and K. A. Gschneider, Jr., Phys. Rev. Lett. 78, 4494 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.4494
2.
2.J. Glanz, Science 27, 2045 (1998).
http://dx.doi.org/10.1126/science.279.5359.2045
3.
3.V. K. Pecharsky and K. A. Gschneider, Jr., J. Magn. Magn. Mater. 200, 44 (1999).
http://dx.doi.org/10.1016/S0304-8853(99)00397-2
4.
4.O. Tegus, E. Brück, K. H. J. Buschow, and F. R. de Boer, Nature 415, 150 (2002).
http://dx.doi.org/10.1038/415150a
5.
5.A. M. Tishin and Y. I. Spichkin, The Magnetocaloric Effect and Its Applications (Institute of Physics Publishing Ltd. Bristol, 2003).
6.
6.E. Brück, J. Phys. D: Appl. Phys. 38, R381 (2005).
http://dx.doi.org/10.1088/0022-3727/38/23/R01
7.
7.K. A. Gschneider, V. K. Pecharsky, and A. O. Tsokol, Rep. Prog. Phys. 68, 1479 (2005).
http://dx.doi.org/10.1088/0034-4885/68/6/R04
8.
8.N. A. de Oliveira and P. J. von Ranke, Phys. Rep. 489, 89 (2010).
http://dx.doi.org/10.1016/j.physrep.2009.12.006
9.
9.L. Morellon, J. Blasco, P. A. Algarabel, and M. R. Ibarra, Phys. Rev. B 62, 1022 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.1022
10.
10.V. K. Pecharsky and K. A. Gschneider, Jr., Appl. Phys. Lett. 70, 3299 (1997).
http://dx.doi.org/10.1063/1.119206
11.
11.F. X. Hu, B. G. Shen, J. R. Sun, and G. H. Wu, Phys. Rev. B. 64, 132412 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.132412
12.
12.S. J. Kim, L. J. Lee, M. H. Jung, H. J. Oh, and Y. S. Kwon, J. Magn. Magn. Mater. 323, 1094 (2011).
http://dx.doi.org/10.1016/j.jmmm.2010.12.020
13.
13.A. Fujita, S. Fujieda, Y. Hasegawa, and K. Fukamichi, Phys. Rev. B 67, 104416 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.104416
14.
14.O. Tegus, E. Brück, K. H. J. Buschow, and F. R. de Boer, Nature 415, 150 (2002).
http://dx.doi.org/10.1038/415150a
15.
15.H. Wada and Y. Tanabe, Appl. Phys. Lett. 79, 3302 (2001).
http://dx.doi.org/10.1063/1.1419048
16.
16.L. G. de Medeiros, Jr. and N.A. de Oliveira, J. Alloys Compd. 501, 177 (2010).
http://dx.doi.org/10.1016/j.jallcom.2010.03.244
17.
17.M. H. Phan and S. C. Yu, J. Magn. Magn. Mater. 308, 325 (2007).
http://dx.doi.org/10.1016/j.jmmm.2006.07.025
18.
18.V. Provenzano, A. J. Shapiro, and R. D. Shull, Nature (London) 429, 853 (2004).
http://dx.doi.org/10.1038/nature02657
19.
19.G. V. Brown, J. Appl. Phys. 47, 3673 (1976).
http://dx.doi.org/10.1063/1.323176
20.
20.J. Sun, J. F Wu, and J. R. Sun, J. Appl. Phys. 106, 083902 (2009).
http://dx.doi.org/10.1063/1.3243289
21.
21.V. Franco, J. M. Borrego, A. Conde, and S. Roth, Appl. Phys. Lett. 88, 132509 (2006).
http://dx.doi.org/10.1063/1.2188385
22.
22.V. Franco, C. F. Conde, A. Conde, and L. F. Kiss, Appl. Phys. Lett. 90, 052509 (2007).
http://dx.doi.org/10.1063/1.2437659
23.
23.P. Alvarez-Alonso, J. L. Sánchez Llamazares, C. F. Sánchez-Valdés, M. L. Fdez-Gubieda, P. Gorria, and J. A. Blanco, J. Appl. Phys. 117, 17A710 (2015).
http://dx.doi.org/10.1063/1.4907188
24.
24.S. Atalay, H. Gencer, and V. S. Kolat, J. Non-Cryst. Solids 351, 2373 (2005).
http://dx.doi.org/10.1016/j.jnoncrysol.2005.07.012
25.
25.Q. Luo, D. Q. Zhao, M. X. Pan, and W. H. Wang, Appl. Phys. Lett. 92, 011923 (2008).
http://dx.doi.org/10.1063/1.2827198
26.
26.L. Liang, X. Hui, Y. Wu, and G. L. Chen, J. Alloys Compds. 457, 541 (2008).
http://dx.doi.org/10.1016/j.jallcom.2007.03.101
27.
27.Q. Luo, D. Q. Zhao, M. X. Pan, and W. H. Wang, Appl. Phys. Lett. 89, 081914 (2006).
http://dx.doi.org/10.1063/1.2338770
28.
28.J. Du, Q. Zheng, Y. B. Li, Q. Zhang, D. Li, and Z. D. Zhang, J. Appl. Phys. 103, 023918 (2008).
http://dx.doi.org/10.1063/1.2836956
29.
29.L. Xia, K. C. Chan, and M. B. Tang, J. Alloys Compd. 509, 6640 (2011).
http://dx.doi.org/10.1016/j.jallcom.2011.03.120
30.
30.S. Lu, M. B. Tang, and L. Xia, Physica B 406, 3398 (2011).
http://dx.doi.org/10.1016/j.physb.2011.06.006
31.
31.N. S. Bingham, H. Wang, F. Qin, H. X. Peng, J. F. Sun, V. Franco, H. Srikanth, and M. H. Phan, Appl. Phys. Lett. 101, 102407 (2012).
http://dx.doi.org/10.1063/1.4751038
32.
32.P. Wang, K. C. Chan, S. Lu, M. B. Tang, and L. Xia, Chin. Phys. Lett. 29, 096103 (2012).
http://dx.doi.org/10.1088/0256-307X/29/9/096103
33.
33.F. Yuan, J. Du, and B. Shen, Appl. Phys. Lett. 101, 032405 (2012).
http://dx.doi.org/10.1063/1.4738778
34.
34.L. Xia, K. C. Chan, M. B. Tang, and Y. D. Dong, J. Appl. Phys. 115, 223904 (2014).
http://dx.doi.org/10.1063/1.4882735
35.
35.L. Xia, Q. Guan, D. Ding, M. B. Tang, and Y. D. Dong, Appl. Phys. Lett. 105, 192402 (2014).
http://dx.doi.org/10.1063/1.4901263
36.
36.Y. F. Ma, P. Yu, and L. Xia, Mater. Design 85, 715 (2015).
http://dx.doi.org/10.1016/j.matdes.2015.07.065
37.
37.H. Oesterreicher and F. T. Parker, J. Appl. Phys. 55, 4336 (1984).
http://dx.doi.org/10.1063/1.333046
38.
38.V. Franco, J. M. Borrego, C. F. Conde, A. Conde, M. Stoica, and S. Roth, J. Appl. Phys. 100, 083903 (2006).
http://dx.doi.org/10.1063/1.2358311
39.
39.V. Franco, J. S. Blázquez, and A. Conde, J. Appl. Phys. 100, 064307 (2006).
http://dx.doi.org/10.1063/1.2337871
40.
40.A. Inoue, T. Zhang, and A. Takeuchi, Mater. Sci. Forum 269, 855 (1998).
http://dx.doi.org/10.4028/www.scientific.net/MSF.269-272.855
41.
41.W. L. Johnson, MRS Bulletin 24, 42 (1999).
http://dx.doi.org/10.1557/S0883769400053252
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/9/10.1063/1.4930832
Loading
/content/aip/journal/adva/5/9/10.1063/1.4930832
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/9/10.1063/1.4930832
2015-09-08
2016-09-26

Abstract

In the present work, we report the magneto-caloric effect (MCE) of a binary GdCo amorphous alloy near the freezing temperature of water. The Curie temperature of GdCo amorphous ribbons is about 267.5 K, which is very close to room temperature. The peak value of the magnetic entropy change (-Δ) and the resulting adiabatic temperature rise (Δ ) of the GdCo amorphous ribbons is much higher than that of any other amorphous alloys previously reported with a near room temperature. On the other hand, although the -Δ of GdCo amorphous ribbons is not as high as those of crystalline alloys near room temperature, its refrigeration capacity () is still much larger than the values of these crystalline alloys. The binary GdCo amorphous alloy provides a basic alloy for developing high performance multi-component amorphous alloys near room temperature.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/9/1.4930832.html;jsessionid=Ku53v_q5iTz3HiWmdfRiIUjw.x-aip-live-02?itemId=/content/aip/journal/adva/5/9/10.1063/1.4930832&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/9/10.1063/1.4930832&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/9/10.1063/1.4930832'
Right1,Right2,Right3,