Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.M. G. Kong, G. Kroesen, G. Morfill, T. Nosenko, T. Shimizu, J. van Dijk, and J. L. Zimmermann, New J. Phys. 11, 115012 (2009).
2.H. J. Seo, M. H. Lee, B. J. Kwon, H. L. Kim, S. J. Lee, B. J. Kim, K. K. Wang, Y. R. Kim, and J. C. Park, J. Appl. Phys. 114, 073304 (2013).
3.K. Kim, J. D. Choi, Y. C. Hong, G. Kim, E. J. Noh, J. S. Lee, and S. S. Yang, Appl. Phys. Lett. 98, 073701 (2011).
4.C. N. Erik, Y. Maksudbek, C. V. Christof, and B. Annemie, J. Phys. D: Appl. Phys. 47, 293001 (2014).
5.A. Shashurin, M. Keidar, S. Bronnikov, R. A. Jurjus, and M. A. Stepp, Appl. Phys. Lett. 93, 181501 (2008).
6.X. F. Zhang, Z. B. Wang, Q. Y. Nie, H. P. Li, and C. Y. Bao, Appl. Therm. Eng. 72, 82 (2014).
7.L. Y. Wang, Z. L. Huang, G. Li, H. X. Zhao, X. H. Xing, W. T. Sun, H. P. Li, Z. X. Gou, and C. Y. Bao, J. Appl. Microbiol. 108, 851 (2010).
8.Q. Y. Nie, Z. Cao, C. S. Ren, D. Z. Wang, and M. G. Kong, New J. Phys. 11, 115015 (2009).
9.Y. B. Guo and F. C. N. Hong, Appl. Phys. Lett. 82, 337 (2003).
10.X. Pei, Z. Wang, Q. Huang, S. Wu, and X. Lu, IEEE Trans. Plasma Sci. 39, 2276 (2011).
11.J. Y. Kim, J. Ballato, and S. O. Kim, Plasma Process. Polym. 9, 253 (2012).
12.H. P. Li, Z. B. Wang, G. Nan, P. S. Le, H. Wu, Y. Lu, L. Y. Wang, C. Zhang, C. Y. Bao, and X. H. Xing, IEEE Trans. Plasma Sci. 40, 2853 (2012).
13.J. F. Kolb, A. A. H. Mohamed, R. O. Price, R. J. Swanson, A. Bowman, R. L. Chiavarini, M. Stacey, and K. H. Schoenbach, Appl. Phys. Lett. 92, 241501 (2008).
14.R. B. Gadri, J. R. Roth, T. C. Montie, K. Kelly-Wintenberg, P. P. Y. Tsai, D. J. Helfritch, P. Feldman, D. M. Sherman, F. Karakaya, and Z. Chen, Surf. Coat. Technol. 131, 528 (2000).
15.S. O. Kim, J. Y. Kim, D. Y. Kim, and J. Ballato, Appl. Phys. Lett. 101, 173503 (2012).
16.N. Y. Babaeva and M. J. Kushner, Plasma Sources Sci. Technol. 23, 015007 (2014).
17.Z. B. Wang, P. S. Le, N. Ge, Q. Y. Nie, H. P. Li, and C. Y. Bao, Plasma Chem. Plasma Process. 32, 859 (2012).
18.N. Balcon, G. J. M. Hagelaar, and J. P. Boeuf, IEEE Trans. Plasma Sci. 36, 2782 (2008).
19.A. J. Yang, X. H. Wang, M. Z. Rong, D. X. Liu, F. Iza, and M. G. Kong, Phys. Plasmas 18, 113503 (2011).
20.Y. Sakiyama and D. B. Graves, J. Appl. Phys. 101, 073306 (2007).
21.G. J. M. Hagelaar and L. C. Pitchford, Plasma Sources Sci. Technol. 14, 722 (2005).
22.W. Morgan, J. Boeuf, and L. Pitchford, BOLSIG Boltzmann Solver (freeware) (1996) Kinema Software, USA-Toulouse, France.
23.R. Deloche, P. Monchicourt, M. Cheret, and F. Lambert, Phys. Rev. A. 13, 1140 (1976).
24.A. V. Phelps, Phys. Rev. 99, 1307 (1955).
25.Y. B. Golubovskii, V. A. Maiorov, J. Behnke, and J. F. Behnke, J. Phys. D: Appl. Phys. 36, 39 (2003).
26.W. J. M. Brok, M. D. Bowden, J. van Dijk, J. J. A. M. van der Mullen, and G. M. W. Kroesen, J. Appl. Phys. 98, 013302 (2005).
27.W. M. Haynes, CRC Handbook of Chemistry and Physics, 93rd ed. (CRC Press, 2012).
28.G. F. Hewitt, G. L. Shires, and T. R. Bott, Process Heat Transfer (Behel House, 2000).
29.X. H. Yuan and L. L. Raja, IEEE Trans. Plasma Sci. 1, 495 (2003).
30.Y. P. Raizer, Gas Discharge Physics (Springer-Verlag Berlin, 1991).
31.H. W. Ellis, R. Y. Pai, E. W. McDaniel, E. A. Mason, and L. A. Viehland, Atomic Data Nucl. Data Tables 17, 177 (1976).

Data & Media loading...


Article metrics loading...



The two-dimensional spatially extended atmospheric plasma arrays by many parallel radio-frequency glow discharge plasma jets packed densely, represent a feature option of large-scale low-temperature atmospheric plasma technologies with distinct capability of directed delivery of reactive species and good insusceptibility to sample variations. However, it is still a challenge to form plasma jet with large area of uniform active species on a downstream substrate due to the complex interactions between individual jets. This paper proposes to numerically study the strategy and mechanism of control/modulation for the array discharge to produce two-dimensional plasma uniformity in the downstream working area. In this work, a two dimensional fluid model is employed to investigate the characteristics in the jet region of helium radio-frequency atmospheric-pressure glow discharge (RF APGD) with array generators. The influences of upstream discharge characteristics, gas flow and their cooperative effects on the distribution of species densities, gas temperatures and the uniformity of active species in the material treating area is studied, and the essential strategy for the modulation method is acquired. The results will be significant for deep understanding of coupling behaviors of multiple plasma plumes in the RF APGD array and applications of the technology.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd