Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/9/10.1063/1.4930957
1.
1.P. Spinelli and A. Polman, Opt. Express 20(S5), A641 (2012).
http://dx.doi.org/10.1364/OE.20.00A641
2.
2.D. Schaadt, B. Feng, and E. Yu, Appl. Phys. Lett. 86, 063106 (2015).
http://dx.doi.org/10.1063/1.1855423
3.
3.S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, J. Appl. Phys. 101, 104309 (2007).
http://dx.doi.org/10.1063/1.2733649
4.
4.S. Pillai, K. R. Catchpole, T. Truke, G. Zhang, J. Zhao, and M. A. Green, Appl. Phys. Lett. 88, 161102 (2006).
http://dx.doi.org/10.1063/1.2195695
5.
5.H. A. Atwater and A. Polman, Nat. Mater. 9, 205 (2010).
http://dx.doi.org/10.1038/nmat2629
6.
6.P. Matheu, S. H. Lim, D. Derkacs, C. McPheeters, and E. T. Yu, Appl. Phys. Lett. 93, 113108 (2008).
http://dx.doi.org/10.1063/1.2957980
7.
7.S. D. Standridge, G. C. Schaz, and J. T. Hupp, J. Am. Chem. Soc. 131, 8407 (2009).
http://dx.doi.org/10.1021/ja9022072
8.
8.T. L. Temple, G. D. K. Mahanama, H.S. Reehal, and D. M. Bagnall, Sol. Energ. Mat. Sol. C. 93, 1978 (2009).
http://dx.doi.org/10.1016/j.solmat.2009.07.014
9.
9.J. Du, J. Qi, D. Wang, and Z. Y. Tang, Energy Environ. Sci. 5, 6914 (2012).
http://dx.doi.org/10.1039/c2ee21264a
10.
10.J. Trice, C. Favazza, H. Garcia, R. Sureshkumar, and R. Kalyanaraman, NanoScience & Engineering. International Society for Optics and Photonics, 70300M (2008).
11.
11.S. D. Standridge, G. C. Schatz, and J. T. Hupp, Langmuir 25, 2596 (2009).
http://dx.doi.org/10.1021/la900113e
12.
12.D. Qu, F. Liu, J. Yu, W. L. Xie, Q. Xu, X. D. Li, and Y. D. Huang, Appl. Phys. Lett. 98, 113119 (2011).
http://dx.doi.org/10.1063/1.3559225
13.
13.M. D. Brown, T. Suteewong, R. S. S. Kumar, V. D’Innocenzo, A. Petrozza, M. M. Lee, U. Wiesner, and H. J. Snaith, Nano Lett. 11, 438 (2011).
http://dx.doi.org/10.1021/nl1031106
14.
14.L. W. Jang, D. W. Jeon, T. Sahoo, D. S. Jo, J. W. Ju, S. J. Lee, J. H. Baek, J. K. Yang, J. H. Song, A.Y. Polyakov, and I. H. Lee, Opt. Express. 20, 2116 (2012).
http://dx.doi.org/10.1364/OE.20.002116
15.
15.M. Shanthil, R. Thomas, R. S. Swathi, and K. G. Thomas, J. Phys. Chem. Lett. 3, 1459 (2012).
http://dx.doi.org/10.1021/jz3004014
16.
16.W. Wang, Z. P. Li, B. H. Gu, Z. Y. Zhang, and H. X. Xu, ACS Nano. 3, 3493 (2009).
http://dx.doi.org/10.1021/nn9009533
17.
17.P. K. Sudeep, K. Takechi, and P. V. Kamat, J. Phys. Chem. C 111, 488 (2007).
http://dx.doi.org/10.1021/jp0665022
18.
18.T. Hirakawa and P. V. Kamat, J. Am. Chem. Soc. 127, 3928 (2005).
http://dx.doi.org/10.1021/ja042925a
19.
19.R. T. Tom, A. S. Nair, N. Singh, M. Aslam, C. L. Nagendra, R. Philip, K. Vijayamohanan, and T. Pradeep, Langmuir 19, 3439 (2003).
http://dx.doi.org/10.1021/la0266435
20.
20.D Bi, L. Häggman, G. Boschloo, L. Yang, E. M. J. Johansson, and A. Hagfeldt, Rsc Adv. 3, 18762 (2013).
http://dx.doi.org/10.1039/c3ra43228a
21.
21.H. S. Kim, M. S. Ivan, G. P. Victoria, F. S. Francisco, J. P. Emilio, N. G. Park, and J. Bisquert, Nat. Commun. 4, 2242 (2013).
22.
22.C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, New York, 1983).
23.
23.W. P. Halperin, Rev. Mod. Phys. 58, 533 (1986).
http://dx.doi.org/10.1103/RevModPhys.58.533
24.
24.E. D. Palik, Handbook of optical constants of Solids (Academic Press, San Diego, 1985).
25.
25.D. M. Schaadt, B. Feng, and E. T. Yu, Appl. Phys. Lett. 86, 063106 (2005).
http://dx.doi.org/10.1063/1.1855423
26.
26.M. Lismont, C. A. Páez, and L. Dreesen, J. Colloid Interf. Sci. 447, 40 (2015).
http://dx.doi.org/10.1016/j.jcis.2015.01.065
27.
27.D. Qu, F. Liu, J. F. Yu, W. L. Xie, Q. Xu, X. D. Li, and Y. D. Huang, Appl. Phys. Lett. 98, 113119 (2011).
http://dx.doi.org/10.1063/1.3559225
28.
28.T. Han, F.Y. Meng, S. W. Zhang, J. Q. Wang, and X. M. Cheng, Acta Phys. Sin. 60, 027303 (2011).
29.
29.F. X Chen, L. S. Wang, and B. Z. Wang, Mod. Phys. Lett. B 28, 1450040 (2014).
http://dx.doi.org/10.1142/S0217984914500407
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/9/10.1063/1.4930957
Loading
/content/aip/journal/adva/5/9/10.1063/1.4930957
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/9/10.1063/1.4930957
2015-09-10
2016-09-30

Abstract

Metal-dielectric core-shell nanostructures have been proposed as a light trapping scheme for enhancing the optical absorption of silicon solar cells. As a potential application of such enhanced effects, the scattering efficiencies of three core-shell structures (Ag@SiO, Ag@TiO, and Ag@ZrO) are discussed using the Mie Scattering theory. For compatibility with experiment results, the core diameter and shell thickness are limited to 100 and 30 nm, respectively, and a weighted scattering efficiency is introduced to evaluate the scattering abilities of different nanoparticles under the solar spectrum AM 1.5. The simulated results indicate that the shell material and thickness are two key parameters affecting the weighted scattering efficiency. The SiO is found to be an unsuitable shell medium because of its low refractive index. However, using the high refractive index mediumTiO in Ag@TiO nanoparticles, only the thicker shell (30 nm) is more beneficial for light scattering. The ZrO is an intermediate refractive index material, so Ag@ZrO nanoparticles are the most effective core-shell nanostructures in these silicon solar cells applications.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/9/1.4930957.html;jsessionid=Y3GgxEi4nhgRvsQ-Pz0hAOJF.x-aip-live-06?itemId=/content/aip/journal/adva/5/9/10.1063/1.4930957&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/9/10.1063/1.4930957&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/9/10.1063/1.4930957'
Right1,Right2,Right3,