Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.R. H. Baughman, A. A. Zakhidov, and W. A. de Heer, Science 297, 787 (2002).
2.A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007).
3.S. H. Kim, W. Song, M. W. Jung, M.-A Kang, K. Kim, S.-J. Chang, S. S. Lee, J. Lim, J. Hwang, S. Myung, and K. S. An, Adv. Mater. 26, 4247 (2014).
4.C. Tang, Q. Zhang, M. Q. Zhao, J.Q Huang, X. B. Cheng, G. L. Tian, H. J. Peng, and F. Wei, Adv. Mater. 26, 6100 (2014).
5.M. H. Yeh, L.Y. Lin, C. L. Sun, Y. A. Leu, J. T. Tsai, C. Y. Yeh, R. Vittal, and K. C. Ho, J. Phys. Chem. C 118, 16626 (2014).
6.J. Kim, L. J. Cote, F. Kim, W. Yuan, K. R. Shull, and J. X. Huang, J. Am. Chem. Soc. 132, 8180 (2010).
7.Y. Zhu, L. Li, C. G. Zhang, G. Casillas, Z. Z. Sun, Z. Yan, G. D. Ruan, Z. W. Peng, A. R. O. Raji, C. Kittrell, R. H. Hauge, and J. M. Tour, Nat. Commun. 3, 1225 (2012).
8.V. C. Tung, J. H. Huang, I. Tevis, F. Kim, J. Kim, C. W. Chu, S. I. Stupp, and J. X. Huang, J. Am. Chem. Soc. 133, 4940 (2011).
9.L. J. Cote, J. Kim, V. C. Tung, J. Y. Luo, F. Kim, and J. X. Huang, Pure Appl. Chem. 83, 95 (2011).
10.D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Z. Sun, A. Slesarev, L. B. Alemany, W. Lu, and J. M. Tour, ACS Nano 4, 4806 (2010).
11.S. S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell, and H. J. Dai, Science 283, 512 (1999).
12.H. J. Jeong, H. D. Jeong, H. Y. Kim, J. S. Kim, S. Y. Jeong, J. T. Han, D. S. Bang, and G. W. Le, Adv. Funct. Mater. 21, 1526 (2011).
13.L. F. Chen, H. He, H. Yu, Y. Q. Cao, D. Le, Q. Q. G. Mengge, C. X. Wu, and L. Q. Hu, Journal of Alloys and Compounds 610, 659 (2014).
14.Z. S. Wu, S. F. Pei, W. C. Ren, D. M. Tang, L. B. Gao, B. L. Liu, F. Li, C. Liu, and H. M. Cheng, Adv. Mater. 21, 1756 (2009).
15.M. S. Dresselhaus, G. Dresselhaus, R. Saito, and A. Jorio, Physics Reports 409, 47 (2005).
16.K. N. Kudin, B. Ozbas, H. C. Schniepp, R. K. Prud’homme, I. A. Aksay, and R. Car, Nano Lett. 8, 36 (2008).
17.R. H. Fowler and L. Nordhe, Proc. R. Soc. London, Ser. A 119, 173 (1928).
18.M. Kumar, K. Kakamu, T. Okazaki, and Y. Ando, Chem. Phys. Lett. 385, 161 (2004).
19.J. M. Bonard, N. Weiss, H. Kind, T. Stöckli, L. Forró, K. Kern, and A. Châtelain, Adv. Mater. 13, 184 (2001).<184::AID-ADMA184>3.0.CO;2-I

Data & Media loading...


Article metrics loading...



Integrating carbon nanotubes (CNTs) and graphene into hybrid structures provides a novel approach to three dimensional (3D) materials with advantageous properties. Here we present a water-processing method to create integrated CNT/graphene hybrids and test their field emission properties. With an optimized mass ratio of CNTs to graphene, the hybrid shows a significantly enhanced field emission performance, such as turn-on electric field of 0.79 V/μm, threshold electric field of 1.05 V/μm, maximum current density of 0.1 mA/cm2, and field enhancement factor of ∼1.3 × 104. The optimized mass ratio for field emission emphasizes the importance of both CNTs and graphene in the hybrid. We also hypothesize a possible mechanism for this enhanced field emission performance from the CNT/graphene hybrid. During the solution treatment, graphene oxide behaves as surfactant sheets for CNTs to form a well dispersed solution, which leads to a better organized 3D structure with more conducting channels for electron transport.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd