Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/9/10.1063/1.4930966
1.
1.R. H. Baughman, A. A. Zakhidov, and W. A. de Heer, Science 297, 787 (2002).
http://dx.doi.org/10.1126/science.1060928
2.
2.A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007).
http://dx.doi.org/10.1038/nmat1849
3.
3.S. H. Kim, W. Song, M. W. Jung, M.-A Kang, K. Kim, S.-J. Chang, S. S. Lee, J. Lim, J. Hwang, S. Myung, and K. S. An, Adv. Mater. 26, 4247 (2014).
http://dx.doi.org/10.1002/adma.201400463
4.
4.C. Tang, Q. Zhang, M. Q. Zhao, J.Q Huang, X. B. Cheng, G. L. Tian, H. J. Peng, and F. Wei, Adv. Mater. 26, 6100 (2014).
http://dx.doi.org/10.1002/adma.201401243
5.
5.M. H. Yeh, L.Y. Lin, C. L. Sun, Y. A. Leu, J. T. Tsai, C. Y. Yeh, R. Vittal, and K. C. Ho, J. Phys. Chem. C 118, 16626 (2014).
http://dx.doi.org/10.1021/jp412542d
6.
6.J. Kim, L. J. Cote, F. Kim, W. Yuan, K. R. Shull, and J. X. Huang, J. Am. Chem. Soc. 132, 8180 (2010).
http://dx.doi.org/10.1021/ja102777p
7.
7.Y. Zhu, L. Li, C. G. Zhang, G. Casillas, Z. Z. Sun, Z. Yan, G. D. Ruan, Z. W. Peng, A. R. O. Raji, C. Kittrell, R. H. Hauge, and J. M. Tour, Nat. Commun. 3, 1225 (2012).
http://dx.doi.org/10.1038/ncomms2234
8.
8.V. C. Tung, J. H. Huang, I. Tevis, F. Kim, J. Kim, C. W. Chu, S. I. Stupp, and J. X. Huang, J. Am. Chem. Soc. 133, 4940 (2011).
http://dx.doi.org/10.1021/ja1103734
9.
9.L. J. Cote, J. Kim, V. C. Tung, J. Y. Luo, F. Kim, and J. X. Huang, Pure Appl. Chem. 83, 95 (2011).
10.
10.D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Z. Sun, A. Slesarev, L. B. Alemany, W. Lu, and J. M. Tour, ACS Nano 4, 4806 (2010).
http://dx.doi.org/10.1021/nn1006368
11.
11.S. S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell, and H. J. Dai, Science 283, 512 (1999).
http://dx.doi.org/10.1126/science.283.5401.512
12.
12.H. J. Jeong, H. D. Jeong, H. Y. Kim, J. S. Kim, S. Y. Jeong, J. T. Han, D. S. Bang, and G. W. Le, Adv. Funct. Mater. 21, 1526 (2011).
http://dx.doi.org/10.1002/adfm.201001469
13.
13.L. F. Chen, H. He, H. Yu, Y. Q. Cao, D. Le, Q. Q. G. Mengge, C. X. Wu, and L. Q. Hu, Journal of Alloys and Compounds 610, 659 (2014).
http://dx.doi.org/10.1016/j.jallcom.2014.04.202
14.
14.Z. S. Wu, S. F. Pei, W. C. Ren, D. M. Tang, L. B. Gao, B. L. Liu, F. Li, C. Liu, and H. M. Cheng, Adv. Mater. 21, 1756 (2009).
http://dx.doi.org/10.1002/adma.200802560
15.
15.M. S. Dresselhaus, G. Dresselhaus, R. Saito, and A. Jorio, Physics Reports 409, 47 (2005).
http://dx.doi.org/10.1016/j.physrep.2004.10.006
16.
16.K. N. Kudin, B. Ozbas, H. C. Schniepp, R. K. Prud’homme, I. A. Aksay, and R. Car, Nano Lett. 8, 36 (2008).
http://dx.doi.org/10.1021/nl071822y
17.
17.R. H. Fowler and L. Nordhe, Proc. R. Soc. London, Ser. A 119, 173 (1928).
http://dx.doi.org/10.1098/rspa.1928.0091
18.
18.M. Kumar, K. Kakamu, T. Okazaki, and Y. Ando, Chem. Phys. Lett. 385, 161 (2004).
http://dx.doi.org/10.1016/j.cplett.2003.12.064
19.
19.J. M. Bonard, N. Weiss, H. Kind, T. Stöckli, L. Forró, K. Kern, and A. Châtelain, Adv. Mater. 13, 184 (2001).
http://dx.doi.org/10.1002/1521-4095(200102)13:3<184::AID-ADMA184>3.0.CO;2-I
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/9/10.1063/1.4930966
Loading
/content/aip/journal/adva/5/9/10.1063/1.4930966
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/9/10.1063/1.4930966
2015-09-10
2016-12-08

Abstract

Integrating carbon nanotubes (CNTs) and graphene into hybrid structures provides a novel approach to three dimensional (3D) materials with advantageous properties. Here we present a water-processing method to create integrated CNT/graphene hybrids and test their field emission properties. With an optimized mass ratio of CNTs to graphene, the hybrid shows a significantly enhanced field emission performance, such as turn-on electric field of 0.79 V/μm, threshold electric field of 1.05 V/μm, maximum current density of 0.1 mA/cm2, and field enhancement factor of ∼1.3 × 104. The optimized mass ratio for field emission emphasizes the importance of both CNTs and graphene in the hybrid. We also hypothesize a possible mechanism for this enhanced field emission performance from the CNT/graphene hybrid. During the solution treatment, graphene oxide behaves as surfactant sheets for CNTs to form a well dispersed solution, which leads to a better organized 3D structure with more conducting channels for electron transport.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/9/1.4930966.html;jsessionid=NPOXi-uk7dW7SdvInQrOLVjH.x-aip-live-06?itemId=/content/aip/journal/adva/5/9/10.1063/1.4930966&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/9/10.1063/1.4930966&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/9/10.1063/1.4930966'
Right1,Right2,Right3,