Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.B. J. Choi, D. S. Jeong, S. K. Kim, C. Rohde, S. Choi, J. H. Oh, H. J. Kim, C. S. Hwang, K. Szot, R. Waser, B. Reichenberg, and S. Tiedke, Journal of Applied Physics 98(3), 033715 (2005).
2.J. J. Yang, M. D. Pickett, X. M. Li, D. A. A. Ohlberg, D. R. Stewart, and R. S. Williams, Nature Nanotechnology 3(7), 429 (2008).
3.X. M. Chen, G. H. Wu, and D. H. Bao, Applied Physics Letters 93(9), 093501 (2008).
4.D. H. Kwon, K. M. Kim, J. H. Jang, J. M. Jeon, M. H. Lee, G. H. Kim, X. S. Li, G. S. Park, B. Lee, S. Han, M. Kim, and C. S. Hwang, Nature Nanotechnology 5(2), 148 (2010).
5.J. J. Yang, F. Miao, M. D. Pickett, D. A. A. Ohlberg, D. R. Stewart, C. N. Lau, and R. S. Williams, Nanotechnology 20(21), 215201 (2009).
6.Y. B. Nian, J. Strozier, N. J. Wu, X. Chen, and A. Ignatiev, Physical Review Letters 98(14), 146403 (2007).
7.André Chanthbouala, Vincent Garcia, Ryan O. Cherifi, Karim Bouzehouane, Stéphane Fusil, Xavier Moya, Stéphane Xavier, Hiroyuki Yamada, Cyrile Deranlot, Neil D. Mathur, Manuel Bibes, Agnès Barthélémy, and Julie Grollier, Nat Mater 11(10), 860 (2012).
8.Lijie Li, Applied Physics Letters 103(23), 233512 (2013).
9.Z. J. Chew and L. Li, Electronics Letters 48(25), 1610 (2012).
10.L. M. Levinson and H. R. Philipp, Journal of Applied Physics 46(3), 1332 (1975).
11.G. D. Mahan, L. M. Levinson, and H. R. Philipp, Journal of Applied Physics 50(4), 2799 (1979).
12.Mohammad A. Alim, Shengtao Li, Fuyi Liu, and Pengfei Cheng, physica status solidi (a) 203(2), 410 (2006).
13.B. J. Coppa, C. C. Fulton, P. J. Hartlieb, R. F. Davis, B. J. Rodriguez, B. J. Shields, and R. J. Nemanich, Journal of Applied Physics 95(10), 5856 (2004).
14.B. J. Coppa, C. C. Fulton, S. M. Kiesel, R. F. Davis, C. Pandarinath, J. E. Burnette, R. J. Nemanich, and D. J. Smith, Journal of Applied Physics 97(10), 103517 (2005).
15.Cheng-Ying Chen, Jose Ramon Duran Retamal, I. Wen Wu, Der-Hsien Lien, Ming-Wei Chen, Yong Ding, Yu-Lun Chueh, Chih- I. Wu, and Jr-Hau He, Acs Nano 6(11), 9366 (2012).
16.Ya Yang, Wen Guo, Xueqiang Wang, Zengze Wang, Junjie Qi, and Yue Zhang, Nano Letters 12(4), 1919 (2012).
17.J. Goldberger, D. J. Sirbuly, M. Law, and P. Yang, Journal of Physical Chemistry B 109(1), 9 (2005).
18.S.M. Sze and K.K. Ng, Physics of Semiconductor Devices (Wiley, 2006).
19.J. W. Luginsland, Y. Y. Lau, and R. M. Gilgenbach, Physical Review Letters 77(22), 4668 (1996).
20.L. K. Ang, T. J. T. Kwan, and Y. Y. Lau, Physical Review Letters 91(20), 208303 (2003).
21.W. Chandra, L. K. Ang, K. L. Pey, and C. M. Ng, Applied Physics Letters 90(15), 153505 (2007).
22.Bin Wei, Kun Zheng, Yuan Ji, Yuefei Zhang, Ze Zhang, and Xiaodong Han, Nano Letters 12(9), 4595 (2012).
23.Yuji Ando and Tomohiro Itoh, Journal of Applied Physics 61(4), 1497 (1987).

Data & Media loading...


Article metrics loading...



The physics of the electromechanical resistive switching is uncovered using the theory of back-to-back Schottky junctions combined with the quantum domain space charge transport. A theoretical model of the basic element of resistive switching devices realized by the metal-ZnO nanowires-metal structure has been created and analyzed. Simulation results show that the reverse biased Schottky junction and the air gap impedance dominate the current-voltage relation at higher external voltages; thereby electromechanically varying the air gap thickness causes the device exhibit resistive tuning characteristics. As the device dimension is in nanometre scale, investigation of the model based on quantum mechanics has also been conducted.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd