Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.J. R. Grandusky, J. A. Smart, M. C. Mendrick, L. J. Schowalter, K. X. Chen, and E. F. Schubert, J. Cryst. Growth 311, 2864 (2009).
2.A. Rice, R. Collazo, J. Tweedie, R. Dalmau, S. Mita, J. Xie, and Z. Sitar, J. Appl. Phys. 108, 043510 (2010).
3.T. Sugahara, H. Sata, M. Hao, Y. Naoki, S. Kurai, S. Tottori, K. Yamashita, K. Nishino, L. Romano, and S. Sakai, Jpn. J. Appl. Phys., Part 2 37, L398 (1998).
4.A. Khan, K. Balakrishnan, and T. Katona, Nature Photon. 2, 77 (2008).
5.M. Shatalov, W. Sun, R. Jain, A. Lunev, X. Hu, A. Dobrinsky, Y. Bilenko, J. Yang, G. A. Garrett, L. E. Rodak, M. Wraback, M. Shur, and R. Gaska, Semicond. Sci. Technol. 29, 084007 (2014).
6.H. Hirayama, N. Maeda, S. Fujikawa, S. Toyoda, and N. Kamata, Jpn. J. Appl. Phys. 53, 100209 (2014).
7.X.-H. Li, T.-T. Kao, Md. M. Satter, Y. O. Wei, S. Wang, H. Xie, S.-H. Shen, P. D. Yoder, A. M. Fischer, F. A. Ponce, T. Detchprohm, and R. Dupuis, Appl. Phys. Lett. 106, 041115 (2015).
8.R. D. Vispute, Hung Wu, and J. Narayan, Appl. Phys. Lett. 67, 1549 (1995).
9.M. Hiroki and N. Kobayashi, Jpn. J. Appl. Phys., Part 1 42, 2305 (2003).
10.V. Adivarahan, W. H. Sun, A. Chitnis, M. Shatalov, S. Wu, H. P. Maruska, and M. A. Khan, Appl. Phys. Lett. 85, 2175 (2004).
11.M. Takeuchi, H. Shimizu, R. Kajitani, K. Kawasaki, Y. Kumagai, A. Koukitu, and Y. Aoyagi, J. Cryst. Growth 298, 336 (2007).
12.H. Hirayama, T. Yatabe, N. Noguchi, T. Ohashi, and N. Kamata, Appl. Phys. Lett. 91, 071901 (2007).
13.J. P. Zhang, M. A. Khan, W. H. Sun, H. M. Wang, C. Q. Chen, Q. Fareed, E. Kuokstis, and J. W. Yang, Appl. Phys. Lett. 81, 4392 (2002).
14.M. Takeuchi, S. Ooishi, T. Ohtsuka, T. Maegawa, T. Koyama, S. F. Chichibu, and Y. Aogi, Appl. Phys. Express 1, 021102 (2008).
15.J. P. Zhang, M. A. Khan, H. M. Wang, W. H. Sun, V. Adivarahan, S. Wu, A. Chitnis, C. Q. Chen, M. Shatalov, E. Kuokstis, J. W. Yang, and M. A. Khan, J. Electron. Mater. 32, 364 (2003).
16.R. G. Banal, M. Funato, and Y. Kawakami, Appl. Phys. Lett. 92, 241905 (2008).
17.Y. Ohba, H. Yoshida, and R. Sato, Jpn. J. Appl. Phys. 36, L1565 (1997).
18.M. Imura, K. Nakano, N. Fujimoto, N. Okada, K. Balakrishnan, M. Iwaya, S. Kamiyama, H. Amano, I. Akasaki, T. Noro, T. Takagi, and Akira Bandoh, Jpn. J. Appl. Phys. 45, 8639 (2006).
19.K. Ueno, J. Ohta, H. Fujioka, and H. Fukuyama, Appl. Phys. Express 4, 015501 (2011).
20.M. Adachi, M. Sugiyama, A. Tanaka, and H. Fukuyama, Materials Transactions 53, 1295 (2012).
21.H. Wang, H. Xiong, Z.-H. Wu, C.-H. Yu, Y. Tian, J.-N. Dai, Y.-Y. Fang, J.-B. Zhang, and C.-Q. Chen, Chin. Phys. B 23, 028101 (2014).
22.Y. A. Xi, K. X. Chen, F. Mont, J. K. Kim, C. Wetzel, E. F. Schubert, W. Liu, X. Li, and J. A. Smart, Appl. Phys. Lett. 89, 103106 (2006).
23.M.-J. Lai, L.-B. Chang, T.-T. Yuan, and R.-M. Lin, Cryst. Res. Technol. 45, 703 (2010).
24.M.-Z. Peng, L.-W. Guo, J. Zhang, N.-S. Yu, X.-L. Zhu, J.-F. Yan, B.-H. Ge, H.-Q. Jia, H. Chen, and J.-M. Zhou, Chin. Phys. Lett. 25, 2265 (2008).
25.K. Kawaguchi and A. Kuramata, Jpn. J. Appl. Phys., Part 2 44, L1400 (2005).
26.Y. Hayashi, R. G. Banal, M. Funato, and Y. Kawakami, J. Appl. Phys. 113, 183523 (2013).
27.Y.-M. Chiang, D. P. Birnie III, and W. D. Kingery, Physical Ceramics (John Wiley and Sons, Inc., 1997).
28.L. P. Van, O. Kurnisikov, and J. Cousty, Surf. Sci. 411, 263 (1998).
29.S. Amelinckx and W. Dekeyser, Solid State Phys. 8, 325 (1959).
30.B. Cai and M. L. Nakarmi, Mater. Res. Soc. Symp. Proc. 1202, 203 (2010).
31.H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, Appl. Phys. Lett. 48, 353 (1986).
32.S. Nakamura, Jpn. J. Appl. Phys. 30, L1705 (1991).

Data & Media loading...


Article metrics loading...



AlN epilayers were grown on (0001) sapphire substrates by metal-organic vapor phase epitaxy, and the influence of the substrate’s surface structure on the formation of in-plane rotation domain is studied. The surface structure is found to change with increasing temperature under H ambient. The ML steps of sapphire substrate formed during high-temperature (HT) thermal cleaning is found to cause the formation of small-angle grain boundary (SAGB). To suppress the formation of such structure, the use of LT-AlN BL technique was demonstrated, thereby eliminating the SAGB. The BL growth temperature () is also found to affect the surface morphology and structural quality of AlN epilayer. The optical emission property by cathodoluminescence (CL) measurement showed higher emission intensity from AlN without SAGB. The LT-AlN BL is a promising technique for eliminating the SAGB.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd