Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/9/10.1063/1.4931163
1.
1.J. Sinova and Igor Žutić, Nat. Mater. 11, 368 (2012).
http://dx.doi.org/10.1038/nmat3304
2.
2.A. H. MacDonald and M. Tsoi, Phil. Trans. R. Soc. A 369, 3098 (2011).
http://dx.doi.org/10.1098/rsta.2011.0014
3.
3.E. V. Gomonay and V. M. Loktev, Low Temp. Phys. 40, 17 (2014).
http://dx.doi.org/10.1063/1.4862467
4.
4.X. Hu, Adv. Mater. 24, 294 (2012).
http://dx.doi.org/10.1002/adma.201102555
5.
5.A. S. Núñez et al., Phys. Rev. B 73, 214426 (2006);
http://dx.doi.org/10.1103/PhysRevB.73.214426
5.R. A. Duine et al., Phys. Rev. B 75, 014433 (2007);
http://dx.doi.org/10.1103/PhysRevB.75.014433
5.P. M. Haney et al., Phys. Rev. B 75, 174428 (2007);
http://dx.doi.org/10.1103/PhysRevB.75.174428
5.Y. Xu et al., Phys. Rev. Lett. 100, 226602 (2008);
http://dx.doi.org/10.1103/PhysRevLett.100.226602
5.P. M. Haney and A. H. MacDonald, Phys. Rev. Lett. 100, 196801 (2008);
http://dx.doi.org/10.1103/PhysRevLett.100.196801
5.H. V. Gomonay and V. M. Loktev, Phys. Rev. B 81, 144427 (2010);
http://dx.doi.org/10.1103/PhysRevB.81.144427
5.K. M. D. Hals et al., Phys. Rev. Lett. 106, 107206 (2011);
http://dx.doi.org/10.1103/PhysRevLett.106.107206
5.E. G. Tveten et al., Phys. Rev. Lett. 110, 127208 (2013);
http://dx.doi.org/10.1103/PhysRevLett.110.127208
5.R. Cheng et al., Phys. Rev. Lett. 113, 057601 (2014).
http://dx.doi.org/10.1103/PhysRevLett.113.057601
6.
6.H. Reichlová, D. Kriegner, V. Holý, K. Olejník, V. Novák, M. Yamada, K. Miura, S. Ogawa, H. Takahashi, T. Jungwirth, and J. Wunderlich, arXiv:1503.03729.
7.
7.P. Wadley, B. Howells, J. Zelezny, C. Andrews, V. Hills, R. P. Campion, V. Novak, F. Freimuth, Y. Mokrousov, A. W. Rushforth, K. W. Edmonds, B. L. Gallagher, and T. Jungwirth, arXiv:1503.03765.
8.
8.Y. Y. Wang, X. Zhou, C. Song, Y. Yan, S. Zhou, G. Wang, C. Chen, F. Zeng, and F. Pan, Adv. Mater. 27, 3196 (2015).
http://dx.doi.org/10.1002/adma.201405811
9.
9.L. Wang, S. G. Wang, S. Rizwan, Q. H. Qin, and X. F. Han, Appl. Phys. Lett. 95, 152512 (2009).
http://dx.doi.org/10.1063/1.3248223
10.
10.B. G. Park, J. Wunderlich, X. Martí, V. Holý, Y. Kurosaki, M. Yamada, H. Yamamoto, A. Nishide, J. Hayakawa, H. Takahashi, A. B. Shick, and T. Jungwirth, Nat. Mater. 10, 347 (2011).
http://dx.doi.org/10.1038/nmat2983
11.
11.Y. Y. Wang, C. Song, B. Cui, G. Y. Wang, F. Zeng, and F. Pan, Phys. Rev. Lett. 109, 137201 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.137201
12.
12.X. Martí, I. Fina, C. Frontera, J. Liu, P. Wadley, Q. He, R. J. Paull, J. D. Clarkson, J. Kudrnovsky, I. Turek, J. Kuneš, D. Yi, J.-H. Chu, C. T. Nelson, L. You, E. Arenholz, S. Salahuddin, J. Fontcuberta, T. Jungwirth, and R. Ramesh, Nat. Mater. 13, 367 (2014).
http://dx.doi.org/10.1038/nmat3861
13.
13.I. Fina, X. Martí, D. Yi, J. Liu, J. H. Chu, C. Rayan-Serrao, S. Suresha, A. B. Shick, J. Zělezný, T. Jungwirth, J. Fontcuberta, and R. Ramesh, Nat. Commun. 5, 4671 (2014).
http://dx.doi.org/10.1038/ncomms5671
14.
14.Y. Y. Wang, C. Song, G. Y. Wang, J. H. Miao, F. Zeng, and F. Pan, Adv. Funct. Mater. 24, 6806 (2014).
http://dx.doi.org/10.1002/adfm.201401659
15.
15.A. Scholl, M. Liberati, E. Arenholz, H. Ohldag, and J. Stöhr, Phys. Rev. Lett. 92, 247201 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.247201
16.
16.X. Martí, B. G. Park, J. Wunderlich, H. Reichlová, Y. Kurosaki, M. Yamada, H. Yamamoto, A. Nishide, J. Hayakawa, H. Takahashi, and T. Jungwirth, Phys. Rev. Lett. 108, 017201 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.017201
17.
17.For reviews on exchange bias, see J. Nogués and I. K. Schuller, J. Magn. Magn. Mater. 192, 203 (1999);
http://dx.doi.org/10.1016/S0304-8853(98)00266-2
17.R. L. Stamps, J. Phys. D: Appl. Phys. 33, R247 (2000);
http://dx.doi.org/10.1088/0022-3727/33/23/201
17.F. Radu and H. Zabel, Springer Tracts Mod. Phys. 227, 97 (2008).
http://dx.doi.org/10.1007/978-3-540-73462-8_3
18.
18.G. Vallejo-Fernandez, B. Kaeswurm, L. E. Fernandez-Outon, and K. O’Grady, IEEE Trans. Magn. 44, 2835 (2008).
http://dx.doi.org/10.1109/TMAG.2008.2001812
19.
19.X. Y. Lang, W. T. Zheng, and Q. Jiang, Nanotechnology 18, 155701 (2007).
http://dx.doi.org/10.1088/0957-4484/18/15/155701
20.
20.N. P. Aley and K. O’Grady, J. Appl. Phys. 109, 07D719 (2011).
http://dx.doi.org/10.1063/1.3549568
21.
21.H. Xi, B. Bian, K. R. Mountfield, Z. Zhuang, D. E. Laughlin, and R. M. White, J. Magn. Magn. Mater. 260, 273 (2003).
http://dx.doi.org/10.1016/S0304-8853(02)00585-1
22.
22.J.-I. Hong, T. Leo, D. J. Smith, and A. E. Berkowitz, Phys. Rev. Lett. 96, 117204 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.117204
23.
23.X. Chen, K. Y. Wang, Z. L. Wu, S. L. Jiang, G. Yang, Y. Liu, J. Teng, and G. H. Yu, Appl. Phys. Lett. 105, 092402 (2014).
http://dx.doi.org/10.1063/1.4894765
24.
24.M. Ali, C. H. Marrows, and B. J. Hickey, Phys. Rev. B 67, 172405 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.172405
25.
25.M. J. Carey, N. Smith, B. A. Gurney, J. R. Childress, and T. Lin, J. Appl. Phys. 89, 6579 (2001).
http://dx.doi.org/10.1063/1.1358821
26.
26.K. Steenbeck, R. Mattheis, and M. Diegel, J. Magn. Magn. Mater. 279, 317 (2004).
http://dx.doi.org/10.1016/j.jmmm.2004.01.089
27.
27.G. Vallejo-Fernandez, L. E. Fernandez-Outon, and K. O’Grady, Appl. Phys. Lett. 91, 212503 (2007).
http://dx.doi.org/10.1063/1.2817230
28.
28.N. P. Aley, G. Vallejo-Fernandez, R. Kroger, B. Lafferty, J. Agnew, Y. Lu, and K. O’Grady, IEEE Trans. Magn. 44, 2820 (2008).
http://dx.doi.org/10.1109/TMAG.2008.2001317
29.
29.S. K. Mishra, F. Radu, S. Valencia, D. Schmitz, E. Schierle, H. A. Dürr, and W. Eberhardt, Phys. Rev. B 81, 212404 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.212404
30.
30.S. G. Wang, R. C. C. Ward, T. Hesjedal, X.-G. Zhang, C. Wang, A. Kohn, Q. L. Ma, J. Zhang, H. F. Liu, and X. F. Han, J. Nanosci. Nanotechnol. 12, 1006 (2012).
http://dx.doi.org/10.1166/jnn.2012.4257
31.
31.C. D. Wagner, W. M. Riggs, L. E. Davis, and J. F. Moulder, Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer, 1979).
32.
32.I. Tomeno, H. N. Fuke, H. Iwasaki, M. Sahashi, and Y. Tsunoda, J. Appl. Phys. 86, 3853 (1999).
http://dx.doi.org/10.1063/1.371298
33.
33.V. M. T. S. Barthem, C. V. Colin, H. Mayaffre, M.-H. Julien, and D. Givord, Nat. Commun. 4, 2892 (2013).
http://dx.doi.org/10.1038/ncomms3892
34.
34.R. Boire and M. F. Collins, Can. J. Phys. 55, 688 (1977).
http://dx.doi.org/10.1139/p77-097
35.
35.N. Ohama and Y. Hamaguchi, J. Phys. Soc. Jpn. 30, 1311 (1971).
http://dx.doi.org/10.1143/JPSJ.30.1311
36.
36.S. Sako and K. Ohshima, J. Phys. Soc. Jpn. 64, 944 (1995).
http://dx.doi.org/10.1143/JPSJ.64.944
37.
37.J. E. Greedan, N. P. Raju, A. S. Wills, C. Morin, S. M. Shaw, and J. N. Reimers, Chem. Mater. 10, 3058 (1998).
http://dx.doi.org/10.1021/cm9801789
38.
38.P. Umek, A. Gloter, M. Pregelj, R. Dominko, M. Jagodic, Z. Jaglicic, A. Zimina, M. Brzhezinskaya, A. Potocnik, C. Filipic, A. Levstik, and D. Arcon, J. Phys. Chem. C 113, 14798 (2009).
http://dx.doi.org/10.1021/jp9050319
39.
39.D. B. Williams and C. B. Carter, Transmission Electron Microscopy: A Textbook for Materials Science, Part 3: IMAGING, 2nd ed. (Springer, New York, 2009).
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/9/10.1063/1.4931163
Loading
/content/aip/journal/adva/5/9/10.1063/1.4931163
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/9/10.1063/1.4931163
2015-09-14
2016-12-09

Abstract

The Blocking temperature ( ) of Pt/NiFe/IrMn/MgO/Pt multilayers was greatly enhanced from far below room temperature (RT) to above RT by inserting 1 nm thick Mg layer at IrMn/MgO interface. Furthermore, the exchange bias field ( ) was increased as well by the control of interfacial structures. The evidence for a significant fraction of Mn-O bonding at IrMn/MgO interface without Mg insertion layer was provided by X-ray photoelectron spectroscopy. The bonding between Mn and O can decrease the antiferromagnetism of IrMn film, leading to lower value of in Pt/NiFe/IrMn/MgO/Pt multilayers. Ultrathin Mg film inserted at IrMn/MgO interface acting as an oxygen sinking layer can suppress the oxidation reactions between Mn and O and reduce the formation of Mn-O bonding greatly. The oxidation suppression results in the recovery of the antiferromagnetism of IrMn film, which can enhance and . Furthermore, the high resolution transmission electron microscopy demonstrates that the Mg insertion layer can efficiently promote a high-quality MgO (200) texture. This study will enhance the understanding of physics in antiferromagnet-based spintronic devices.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/9/1.4931163.html;jsessionid=ccdgW7w7ykB2Ahzpcpf9iZqQ.x-aip-live-03?itemId=/content/aip/journal/adva/5/9/10.1063/1.4931163&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/9/10.1063/1.4931163&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/9/10.1063/1.4931163'
Right1,Right2,Right3,