Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.G. Kocher-Oberlehner, M. Bardosova, M. Pemble, and B. S. Richards, Solar Energy Mater. Solar Cells 104, 53 (2012).
2.M. E. Solano, M. Faryad, P. B. Monk, T. E. Mallouk, and A. Lakhtakia, Appl. Phys. Lett. 103, 191115 (2013); errata: 106, 079901 (2015).
3.S. Bouchard and S. Thibault, Opt. Lett. 39, 1197 (2014).
4.J. Yoon, A. J. Baca, S.-I. Park, P. Elvikis, J. B. Geddes III, L. Li, R. H. Kim, J. Xiao, S. Wang, T.-H. Kim, M. J. Motala, B. Y. Ahn, E. B. Duoss, J. A. Lewis, R. G. Nuzzo, P. M. Ferreira, Y. Huang, A. Rockett, and J. A. Rogers, Nature Mater. 7, 907 (2008).
5.J. Yoon, L. Li, A. V. Semichaevsky, J. H. Ryu, H. T. Johnson, R. G. Nuzzo, and J. A. Rogers, Nature Commun. 2, 343 (2011).
6.R. J. Knuesel and H. O. Jacobs, Adv. Mater. 23, 2727 (2011).
7.J. P. Hugonin, R. Petit, and M. Cadilhac, J. Opt. Soc. Am. 71, 593 (1981).
8.J. A. Polo, Jr., T. G. Mackay, and A. Lakhtakia, Electromagnetic Surface Waves: A Modern Perspective (USA: Elsevier, Waltham, MA, 2013).
9.P. B. Monk, Finite Element Methods for Maxwell’s Equations (United Kingdom: Oxford University Press, Oxford, 2003).
10.M. E. Solano, M. Faryad, A. Lakhtakia, and P. B. Monk, J. Opt. Soc. Am. A 31, 2275 (2014).
11. (accessed 27 January 2015).
13.M. Faryad, A. S. Hall, G. D. Barber, T. E. Mallouk, and A. Lakhtakia, J. Opt. Soc. Am. B 29, 704 (2012).
14.L. M. Anderson, Proc. SPIE 408, 172 (1983).
15.P. Sheng, A. N. Bloch, and R. S. Stepleman, Appl. Phys. Lett. 43, 579 (1983).
16.L. Liu, M. Faryad, A. S. Hall, G. D. Barber, S. Erten, T. E. Mallouk, A. Lakhtakia, and T. S. Mayer, J. Nanophoton. 9, 093593 (2015).
17.T. Khaleque and R. Magnusson, J. Nanophoton. 8, 083995 (2014).
18.R. Storn and K. Price, J. Global Optim. 11, 341 (1997).
20.h2p:// (accessed 17 July 2015).
21.M. Chen and R. E. Blankenship, Trends Plant Sci. 16, 427 (2011).
22.H. J. Simon, D. E. Mitchell, and J. G. Watson, Am. J. Phys. 43, 630 (1975).

Data & Media loading...


Article metrics loading...



The effect of inserting a buffer layer between a periodically multilayered isotropic dielectric (PMLID) material acting as a planar optical concentrator and a photovoltaic solar cell was theoretically investigated. The substitution of the photovoltaic material by a cheaper dielectric material in a large area of the structure could reduce the fabrication costs without significantly reducing the efficiency of the solar cell. Both crystalline silicon (c-Si) and gallium arsenide (GaAs) were considered as the photovoltaic material. We found that the buffer layer can act as an antireflection coating at the interface of the PMLID and the photovoltaic materials, and the structure increases the spectrally averaged electron-hole pair density by 36% for c-Si and 38% for GaAs compared to the structure without buffer layer. Numerical evidence indicates that the optimal structure is robust with respect to small changes in the grating profile.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd