Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.Y. F. Wu, A. Saxler, M. Moore, R. P. Smith, S. T. Sheppard, P. M. Chavarkar, T. Wisleder, U. K. Mishra, and P. Parikh, Electron Device Letters, IEEE 25, 117 (2004).
2.H. Zhang, E. J. Miller, and E. T. Yu, Journal of Applied Physics 99, 023703 (2006).
3.T. Hashizume, J. Kotani, and H. Hasegawa, Applied Physics Letters 84, 4884 (2004).
4.D. M. Sathaiya and S. Karmalkar, Electron Devices, IEEE Transactions on 55, 557 (2008).
5.J. M. Andrews and F. B. Koch, Solid-state Electron. 14, 901 (1971).
6.S. H. Wemple, W. C. Niehaus, H. M. Cox, J. V. DiLorenzo, and W. O. Schlosser, Electron Devices, IEEE Transactions on 27, 1013 (1980).
7.D. Yan, H. Lu, D. Cao, D. Chen, R. Zhang, and Y. Zheng, Applied Physics Letters 97, 153503 (2010).
8.L. Xia, A. Hanson, T. Boles, and D. Jin, Applied Physics Letters 102, 113510 (2013).
9.W. Lu, L. Wang, G. Siyuan, D. P. R. Aplin, D. M. Estrada, P. K. L. Yu, and P. M. Asbeck, Electron Devices, IEEE Transactions on 58, 1986 (2011).
10.X.-H. Ma, W.-W. Chen, B. Hou, K. Zhang, J.-J. Zhu, J.-C. Zhang, X.-F. Zheng, and Y. Hao, Applied Physics Letters 104, 093504 (2014).
11.S. Oyama, T. Hashizume, and H. Hasegawa, Applied Surface Science 190, 322 (2002).
12.S. Turuvekere, N. Karumuri, A. A. Rahman, A. Bhattacharya, A. Dasgupta, and N. DasGupta, Electron Devices, IEEE Transactions on 60, 3157 (2013).
13.E. J. Miller, E. T. Yu, P. Waltereit, and J. S. Speck, Applied Physics Letters 84, 535 (2004).
14.S. Ganguly, A. Konar, Z. Hu, H. Xing, and D. Jena, Applied Physics Letters 101, 253519 (2012).
15.O. Mitrofanov, Journal of Applied Physics 95, 6414 (2004).
16.O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, and J. Hilsenbeck, Journal of Applied Physics 85, 3222 (1999).
17.Z. Aixi, Z. Lining, T. Zhikai, C. Xiaoxu, W. Yan, K. J. Chen, and C. Mansun, Electron Devices, IEEE Transactions on 61, 755 (2014).
18.V. K. Gurugubelli and S. Karmalkar, Journal of Applied Physics 118, 034503 (2015).
19.M. H. Somerville and J. A. del Alamo, Electron Devices Meeting, 1996. IEDM ’96., International (1996) p. 35.
20.Z. A. Weinberg, Journal of Applied Physics 53, 5052 (1982).

Data & Media loading...


Article metrics loading...



By comparing the Schottky diodes of different area and perimeter, reverse gate leakage current of AlGaN/GaN high mobility transistors (HEMT) at gate bias beyond threshold voltage is studied. It is revealed that reverse current consists of area-related and perimeter-related current. An analytical model of electric field calculation is proposed to obtain the average electric field around the gate edge at high revers bias and estimate the effective range of edge leakage current. When the reverse bias increases, the increment of electric field is around the gate edge of a distance of Δ, and perimeter-related gate edge current keeps increasing. By using the calculated electric field and the temperature-dependent current-voltage measurements, the edge gate leakage current mechanism is found to be Fowler-Nordheim tunneling at gate bias bellows -15V caused by the lateral extended depletion region induced barrier thinning. Effective range of edge current of Schottky diodes is about hundred to several hundred nano-meters, and is different in different shapes of Schottky diodes.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd