Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/9/10.1063/1.4931630
1.
1.L. Schlapbach and A. Züttel, Natrue 414, 353 (2001).
http://dx.doi.org/10.1038/35104634
2.
2.W. Lubitz and W. Tumas, Chem. Rev. 107, 3900 (2007).
http://dx.doi.org/10.1021/cr050200z
3.
3.J. Graetz, Chem. Soc. Rev. 38, 73 (2009).
http://dx.doi.org/10.1039/B718842K
4.
4.P. Jena, J. Phys. Chem. Lett. 2, 206 (2011).
http://dx.doi.org/10.1021/jz1015372
5.
5.J. Yang, A. Sudik, C. Wolvertonb, and D. J. Siegel, Chem. Soc. Rev. 39, 656 (2010).
http://dx.doi.org/10.1039/B802882F
6.
6.R. Ma, Y. Bando, H. Zhu, T. Sato, C. Xu, and D. Wu, J. Am. Chem. Soc. 124, 7672 (2002).
http://dx.doi.org/10.1021/ja026030e
7.
7.Z.X. Yang, Y.D. Xia, and R. Mokaya, J. Am. Chem. Soc. 129, 1673 (2007).
http://dx.doi.org/10.1021/ja067149g
8.
8.S. Orimo, Y. Nakamori, J.R. Eliseo, A. Züttel, and C.M. Jensen, Chem. Rev. 107, 4111 (2007).
http://dx.doi.org/10.1021/cr0501846
9.
9.P. Chen and M. Zhu, Mater. Today 11, 36 (2008).
http://dx.doi.org/10.1016/S1369-7021(08)70251-7
10.
10.S. Q. Zhou, X. J. Liu, K. W. Yang, and H. Zou, AIP Adv. 3, 082119 (2013).
http://dx.doi.org/10.1063/1.4819405
11.
11.D. Henwood and J.D. Carey, Phys. Rev. B 75, 245413 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.245413
12.
12.J.R. Cheng, L.B. Zhang, R. Ding, Z.F. Ding, X. Wang, and Z. Wang, Int. J. Hyd. Energy 32, 3402 (2007).
http://dx.doi.org/10.1016/j.ijhydene.2007.02.037
13.
13.D.V. Schur, S.Y. Zaginaichenko, A.F. Savenko, V.A. Bogolepov, N.S. Anikina, A.D. Zolotarenko, Z.A. Matysina, T.N. Veziroglu, and N.E. Skryabina, Int. J. Hyd. Energy 36, 1143 (2011).
http://dx.doi.org/10.1016/j.ijhydene.2010.06.087
14.
14.Z. Zhou, J.J. Zhao, Z.F. Chen, X.P. Gao, T.Y. Yan, B. Wen, and P.V. Schleyer, J. Phys. Chem. B. 110, 13363 (2006).
http://dx.doi.org/10.1021/jp0622740
15.
15.O.V. Pupysheva, A.A. Farajian, and B.I. Yakobson, Nano Lett. 8, 767 (2008).
http://dx.doi.org/10.1021/nl071436g
16.
16.W.H. Shin, S.H. Yang, W.A. Goddard, and J.K. Kang, Appl. Phys. Lett. 88, 053111 (2006).
http://dx.doi.org/10.1063/1.2168775
17.
17.Y.C. Li, G. Zhou, J. Li, B.L. Gu, and W.H. Duan, J. Phys. Chem. C 112, 19268 (2008).
http://dx.doi.org/10.1021/jp807156g
18.
18.G.F. Wu, J.L. Wang, X.Y. Zhang, and L.Y. Zhu, J. Phys. Chem. C 113, 7052 (2009).
http://dx.doi.org/10.1021/jp8113732
19.
19.Y.F. Zhao, Y.H. Kim, A.C. Dillon, J.M. Heben, and S.B. Zhang, Phys. Rev. Lett. 94, 155504 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.155504
20.
20.T. Yildrim and S. Ciraci, Phys. Rev. Lett. 94, 175501 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.175501
21.
21.Q. Sun, Q. Wang, P. Jena, and Y. Kawazoe, J. Am. Chem. Soc. 127, 14582 (2005).
http://dx.doi.org/10.1021/ja0550125
22.
22.N.S. Venkataramanan, M. Khazaei, R. Sahara, H. Mizuseki, and Y. Kawazoe, Chem. Phys. 359, 173 (2009).
http://dx.doi.org/10.1016/j.chemphys.2009.04.001
23.
23.J. Guo, Z.G. Liu, S.Q. Liu, X.H. Zhao, and K.L. Huang, Appl. Phys. Lett. 98, 023107 (2011).
http://dx.doi.org/10.1063/1.3533909
24.
24.Q. Sun, P. Jena, Q. Wang, and M. Marquez, J. Am. Chem. Soc. 128, 9741 (2006).
http://dx.doi.org/10.1021/ja058330c
25.
25.K.R.S. Chandrakumar and S.K. Ghosh, Nano Lett. 8, 13 (2008).
http://dx.doi.org/10.1021/nl071456i
26.
26.Y.H. Guo, K. Jiang, B. Xu, Y.D. Xia, J. Yin, and Z.G. Liu, J. Phys. Chem. C 116, 13837 (2012).
http://dx.doi.org/10.1021/jp302062c
27.
27.X.W. Chen, F. Yuan, Q.F. Gu, and X.B. Yu, J. Mater. Chem. A 1, 11705 (2013).
http://dx.doi.org/10.1039/c3ta11940h
28.
28.H. An, C.S. Liu, Z. Zeng, C. Fan, and X. Ju, Appl. Phys. Lett. 98, 173101 (2011).
http://dx.doi.org/10.1063/1.3583465
29.
29.M. Yoon, S.Y. Yang, C. Hicke, E. Wang, D. Geohegan, and Z.Y. Zhang, Phys. Rev. Lett. 100, 206806 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.206806
30.
30.M. Li, Y.F. Li, Z. Zhou, P. W. Shen, and Z.F. Chen, Nano Lett. 9, 1944 (2009).
http://dx.doi.org/10.1021/nl900116q
31.
31.Q. Wang, Q. Sun, P. Jena, and Y. Kawazoe, J. Chem. Theory Comput. 5, 374 (2009).
http://dx.doi.org/10.1021/ct800373g
32.
32.C. Ataca, E. Aktürk, and S. Ciraci, Phys. Rev. B 79, 041406 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.041406
33.
33.X.B. Yang, R.Q. Zhang, and J. Ni, Phys. Rev. B 79, 075431 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.075431
34.
34.P.B. Sorokin, H. Lee, L.Y. Antipina, A.K. Singh, and B.I. Yakobson, Nano Lett. 11, 2660 (2011).
http://dx.doi.org/10.1021/nl200721v
35.
35.C. Li, J.B. Li, F.M. Wu, S.S. Li, J.B. Xia, and L.W. Wang, J. Phys. Chem. C 114, 23221 (2011).
http://dx.doi.org/10.1021/jp208423y
36.
36.L. Ma, J.M. Zhang, K.W. Xu, and V. Ji, Physica E 63, 45 (2014).
http://dx.doi.org/10.1016/j.physe.2014.05.004
37.
37.H. An, C.S. Liu, and Z. Zeng, Phys. Rev. B 83, 115456 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.115456
38.
38.M. H. Wu, Y. Gao, Z.Y. Zhang, and X.C. Zeng, Nanoscale 4, 915 (2012).
http://dx.doi.org/10.1039/c2nr11257d
39.
39.A. Bateni, S. Repp, R. Thomann, S. Acar, E. Erdem, and M. Somer, Appl. Phys. Lett. 105, 202605 (2014).
http://dx.doi.org/10.1063/1.4902375
40.
40.A. Bateni, E. Erdem, S. Repp, S. Acar, I. Kokal, W. Häßler, S. Weber, and M. Somer, J. Appl. Phys. 117, 153905 (2015).
http://dx.doi.org/10.1063/1.4918608
41.
41.C.S. Liu and Z. Zeng, Appl. Phys. Lett. 96, 123101 (2010).
http://dx.doi.org/10.1063/1.3367773
42.
42.E. Beheshti, A. Nojeh, and P. Servati, Carbon 49, 1561 (2011).
http://dx.doi.org/10.1016/j.carbon.2010.12.023
43.
43.H. Yanagisawa, T. Tanaka, Y. Ishida, M. Matsue, E. Rokuta, S. Otani, and C. Oshima, Phys. Rev. Lett. 93, 177003 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.177003
44.
44.Y. Pei and X.C. Zeng, J. Am. Chem. Soc. 130, 2580 (2008).
http://dx.doi.org/10.1021/ja077139v
45.
45.J.D. Presilla-Márquez, C.W. Larson, P.G. Carrick, and C.M.L. Rittby, J. Chem. Phys. 105, 3398 (1996).
http://dx.doi.org/10.1063/1.472225
46.
46.J.D. Presilla-Márquez, P.G. Carrick, and C.W. Larson, J. Chem. Phys. 110, 5702 (1999).
http://dx.doi.org/10.1063/1.478468
47.
47.T. Guo, C.M. Jin, and R.E. Smalley, J. Phys. Chem. 95, 4948 (1991).
http://dx.doi.org/10.1021/j100166a010
48.
48.X.J. Wu, Y. Pei, and X.C. Zeng, Nano Lett. 9, 1577 (2009).
http://dx.doi.org/10.1021/nl803758s
49.
49.X.Y. Luo, J.H. Yang, H.Y. Liu, X.J. Wu, Y.C. Wang, Y.M. Ma, S.H. Wei, X.G. Gong, and H.J. Xiang, J. Am. Chem. Soc. 113, 16285 (2011).
http://dx.doi.org/10.1021/ja2072753
50.
50.R.H. Xie, L. Jensen, G.W. Bryant, J.J. Zhao, and V.H. Smith, Jr., Chem. Phys. Lett. 375, 445 (2003).
http://dx.doi.org/10.1016/S0009-2614(03)00879-0
51.
51.R.H. Xie, G.W. Bryant, J.J. Zhao, V.H. Smith, Jr., A.D. Carlo, and A. Pecchia, Phys. Rev. Lett. 90, 206602 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.206602
52.
52.M.R. Manaa, H.A. Ichord, and D.W. Sprehh, Chem. Phys. Lett. 378, 449 (2003).
http://dx.doi.org/10.1016/S0009-2614(03)01328-9
53.
53.M.R. Manaa, Chem. Phys. Lett. 382, 194 (2003).
http://dx.doi.org/10.1016/j.cplett.2003.10.074
54.
54.Q. Sun, Q. Wang, and P. Jena, Appl. Phys. Lett. 94, 013111 (2009).
http://dx.doi.org/10.1063/1.3058678
55.
55.A.D. Becke, Phys. Rev. A 38, 3098 (1988);
http://dx.doi.org/10.1103/PhysRevA.38.3098
55.A. D. Becke, J. Chem. Phys. 98, 5648 (1993).
http://dx.doi.org/10.1063/1.464913
56.
56.C. Lee, W. Yang, and R.G. Parr, Phys. Rev. B 37, 785 (1988);
http://dx.doi.org/10.1103/PhysRevB.37.785
56.B. Miehlich, A. Savin, H. Stoll, and H. Preuss, Chem. Phys. Lett. 157, 200 (1989).
http://dx.doi.org/10.1016/0009-2614(89)87234-3
57.
57.M.J. Frisch et al., Gaussian 03. Revision E.01 (Gaussian Inc, Wallingford CT, 2004).
58.
58.F. Weinhold, NBO 3.0 Program, 3.0 ed. (University of Wisconsin, Madison, WI, 2001).
59.
59.T. Lu and F.W. Chen, J. Comp. Chem. 33, 580 (2012).
http://dx.doi.org/10.1002/jcc.22885
60.
60.F.Y. Liu, L.P. Meng, and S.J. Zheng, J. Phys. Chem. B 110, 6666 (2006).
http://dx.doi.org/10.1021/jp057350y
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/9/10.1063/1.4931630
Loading
/content/aip/journal/adva/5/9/10.1063/1.4931630
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/9/10.1063/1.4931630
2015-09-18
2016-09-28

Abstract

The hydrogen adsorption on Ca-decorated CB clusters is studied using density functional theory. The favorable binding site for Ca atom is the hexagonal CB rings. The strong interaction between Ca atoms and CB cluster hinders the aggregation of Ca atoms on the cluster surface. CB is an electron deficient system with a large electron affinity of 2.952 eV. The decorated Ca atoms transfer their electrons to the cluster easily. The net charges on the Ca atoms are in the range of 1.101 to 1.563 e. When H molecules approach the Ca atoms, they are moderately polarized and adsorbed around the Ca atoms in molecular form. The adsorption strength can reach up to 0.133 eV/H. Each Ca atom in the Ca-decorated CB complexes can adsorb three H molecules. The fully decorated CBCa can hold up to 18 H molecules.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/9/1.4931630.html;jsessionid=wd0AbF4NPF1obVY2EJaRhHVU.x-aip-live-03?itemId=/content/aip/journal/adva/5/9/10.1063/1.4931630&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/9/10.1063/1.4931630&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/9/10.1063/1.4931630'
Right1,Right2,Right3,