Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/9/10.1063/1.4931640
1.
1.E. T. Swartz and R. O. Pohl, Applied Physics Letter 51, 2200 (1987).
http://dx.doi.org/10.1063/1.98939
2.
2.D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, H. J. Maris, R. Merlin, and S. R. Phillpot, Journal of Applied Physics 93, 793 (2003).
http://dx.doi.org/10.1063/1.1524305
3.
3.P. L. Kapitza, Journal of Physics (USSR) 4, 181 (1941).
4.
4.W. Little, Canadian Journal of Physics 37 (1959).
http://dx.doi.org/10.1139/p59-037
5.
5.E. T. Swartz and R. O. Pohl, Review of Modern Physics 61, 605 (1989).
http://dx.doi.org/10.1103/RevModPhys.61.605
6.
6.J. C. Duda, P. E. Hopkins, J. L. Smoyer, M. L. Bauer, T. S. English, C. B. Saltonstall, and P. M. Norris, Nanoscale and Microscale Thermophysical Engineering 14, 21 (2010).
http://dx.doi.org/10.1080/15567260903530379
7.
7.P. Hopkins and P. Norris, Journal of Heat Transfer 131 (2009).
8.
8.W. Pickett, J. Feldman, and J. Deppe, Modelling Simul. Mater. Sci. Eng. 4, 409 (1996).
http://dx.doi.org/10.1088/0965-0393/4/4/006
9.
9.S. Volz, J. Saulnier, G. Chen, and P. Beauchamp, Microelectronics Journal 31, 815 (2000).
http://dx.doi.org/10.1016/S0026-2692(00)00064-1
10.
10.C.-J. Twu and J.-R. Ho, Physical Review B 67, 205422 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.205422
11.
11.Y. Chen, D. Li, J. R. Lukes, Z. Ni, and M. Chen, Physical Review B 72, 1 (2005).
12.
12.C. J. Gomes, M. Madrid, J. V. Goicochea, and C. H. Amon, Transactions of the ASME 128, 1114 (2006).
http://dx.doi.org/10.1115/1.2352781
13.
13.S. S. Mahajan, G. Subbarayan, and B. G. Sammakia, IEEE Transactions on Components, Packaging and Manufacturing Technology 1, 1132 (2011).
http://dx.doi.org/10.1109/TCPMT.2011.2112356
14.
14.E. Lampin, Q. H. Nguyen, P. A. Francioso, and F. Cleri, Applied Physics Letters 100, 131906 (2012).
http://dx.doi.org/10.1063/1.3698325
15.
15.Z. Liang and P. Keblinski, Physical Review B 90, 075411 (2014).
http://dx.doi.org/10.1103/PhysRevB.90.075411
16.
16.J. Chen, G. Zhang, and B. Li, Applied Physics Letters 95 (2009).
17.
17.M. Hu, K. P. Giapis, J. V. Goicochea, X. Zhang, and D. Poulikakos, Nano Letters 11, 618 (2011).
http://dx.doi.org/10.1021/nl103718a
18.
18.J. R. Lukes and H. Zhong, Journal of Heat Transfer 129, 705 (2007).
http://dx.doi.org/10.1115/1.2717242
19.
19.Z.-Y. Ong and E. Pop, Physical Review B 81, 155408 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.155408
20.
20.A. Maiti, G. Mahan, and S. Pantelides, Solid State Communications 102, 517 (1997).
http://dx.doi.org/10.1016/S0038-1098(97)00049-5
21.
21.A. Skye and P. K. Schelling, Journal of Applied Physics 103 (2008).
http://dx.doi.org/10.1063/1.2936868
22.
22.M. Hu, P. Keblinski, and P. K. Schelling, Physical Review B 79, 104305 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.104305
23.
23.L. Hu, L. Zhang, M. Hu, J.-S. Wang, B. Li, and P. Keblinski, Physical Review B 81, 235427 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.235427
24.
24.J. Chen, G. Zhang, and B. Li, Journal of Applied Physics 112, 064319 (2012).
http://dx.doi.org/10.1063/1.4754513
25.
25.P. Hegedus and A. Abramson, International Journal of Heat and Mass Transfer 49, 4921 (2006).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2006.05.030
26.
26.E. S. Landry and A. J. H. McGaughey, Physical Review B 80, 165304 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.165304
27.
27.J. Duda, T. English, E. Piekos, W. Soffa, L. Zhigilei, and P. Hopkins, Physical Review B 84 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.193301
28.
28.X.-G. Liang and L. Sun, Microscale Thermophysical Engineering 9, 295 (2005).
http://dx.doi.org/10.1080/10893950500196469
29.
29.R. Stevens, L. Zhigilei, and P. Norris, International Journal of Heat and Mass Transfer 50, 3977 (2007).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2007.01.040
30.
30.X. W. Zhou, R. E. Jones, C. J. Kimmer, J. C. Duda, and P. E. Hopkins, Physical Review B 87, 094303 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.094303
31.
31.Z. Tian, K. Esfarjani, and G. Chen, Physical Review B 86, 235304 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.235304
32.
32.X. Li and R. Yang, Physical Review B 86, 054305 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.054305
33.
33.R. J. Stevens, P. M. Norris, and L. V. Zhigilei, International Mechanical Engineering Congress and Exposition 37 (2004).
34.
34.Y. Chen, J. R. Lukes, D. Li, J. Yang, and Y. Wu, Journal of Chemical Physics 120, 3841 (2004).
http://dx.doi.org/10.1063/1.1643725
35.
35.X. Huang, X. Huai, S. Liang, and X. Wang, Journal of Physics D: Applied Physics 42, 095416 (2009).
http://dx.doi.org/10.1088/0022-3727/42/9/095416
36.
36.V. Samvedi and V. Tomar, Journal of Applied Physics 105 (2009).
http://dx.doi.org/10.1063/1.3056135
37.
37.T. S. English, J. C. Duda, J. L. Smoyer, D. A. Jordan, and P. M. Norris, Physical Review B 85, 035438 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.035438
38.
38.X. W. Zhou, R. E. Jones, J. C. Duda, and P. E. Hopkins, Phys. Chem. Chem. Phys. 15, 11078 (2013).
http://dx.doi.org/10.1039/c3cp51131f
39.
39.S. Plimpton, Journal of Computational Physics 117, 1 (1995).
http://dx.doi.org/10.1006/jcph.1995.1039
40.
40.S. H. Choi and S. Maruyama, International Journal of Thermal Sciences 44, 547 (2004).
http://dx.doi.org/10.1016/j.ijthermalsci.2004.12.006
41.
41.Y. F. Chen, D. Y. Li, J. K. Yang, Y. H. Yu, J. R. Lukes, and A. Majumdar, Physica B—Condensed Matter 349, 270 (2004).
http://dx.doi.org/10.1016/j.physb.2004.03.247
42.
42.M. Allen and D. Tildesley, Computer Simulation of Liquids (Oxford, 1987).
43.
43.N. A. Roberts and D. G. Walker, Journal of Applied Physics 108, 123515 (2010).
http://dx.doi.org/10.1063/1.3517159
44.
44.N. A. Roberts and D. G. Walker, International Journal of Thermal Sciences 50, 648 (2011).
http://dx.doi.org/10.1016/j.ijthermalsci.2010.12.004
45.
45.Z. Aksamija and I. Knezevic, Physical Review B 88, 155318 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.155318
46.
46.D. Y. Li, Y. Wu, R. Fan, P. D. Yang, and A. Majumdar, Applied Physics Letters 83, 3186 (2003).
http://dx.doi.org/10.1063/1.1619221
47.
47.L. T. Kong, Computer Physics Communications 182, 2201 (2011).
http://dx.doi.org/10.1016/j.cpc.2011.04.019
48.
48.J. A. Barker and M. L. Klein, Physical Review B 2, 4176 (1970).
http://dx.doi.org/10.1103/PhysRevB.2.4176
49.
49.A. McGaughey and M. Kaviany, International Journal of Heat and Mass Transfer 47 (2004).
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/9/10.1063/1.4931640
Loading
/content/aip/journal/adva/5/9/10.1063/1.4931640
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/9/10.1063/1.4931640
2015-09-18
2016-12-05

Abstract

The impact of mass and bond energy difference and interface defects on thermal boundary conductance (TBC) is investigated using non-equilibrium molecular dynamics (NEMD) with the Lennard-Jones (L-J) interatomic potential. Results show that the maximum TBC is achieved when the mass and bond energy of two dissimilar materials are matched, although the effective thermal conductivity is not necessarily a maximum due to the contributions of the thermal conductivity of the constituent materials. Mass and bond energy differences result in a mismatch between phonon dispersions, limiting high frequency phonon transport at the interface. This frequency mismatch is defined by a frequency ratio, which is a ratio of the characteristic frequencies of the two materials, presented in the discussion section, and is a reference of the level of phonon dispersion mismatch. Inelastic scattering may result at higher temperatures, especially when there exists a bond energy difference, resulting in strain in the lattice, which would allow phonons outside the allowable frequency range to contribute to transport. TBC decreases abruptly with small mass differences, but at which point larger differences in mass have no impact. In addition, interdiffusion across the interface further reduces the TBC between the frequency ratios of 0.79 and 1.26 while vacancies have negligible impact.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/9/1.4931640.html;jsessionid=Jgqb3aCgnVhMy3EXW2i2R4en.x-aip-live-03?itemId=/content/aip/journal/adva/5/9/10.1063/1.4931640&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/9/10.1063/1.4931640&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/9/10.1063/1.4931640'
Right1,Right2,Right3,