Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/9/10.1063/1.4931641
1.
1.S.A. Maier, Plasmonics: Fundamentals and Applications (Springer Science & Business Media, 2007).
2.
2.E. Hutter and J.H. Fendler, Adv. Mater. 16, 1685 (2004).
http://dx.doi.org/10.1002/adma.200400271
3.
3.E. Petryayeva and U.J. Krull, Anal. Chim. Acta 706, 8 (2011).
http://dx.doi.org/10.1016/j.aca.2011.08.020
4.
4.K.A. Willets and R.P. Van Duyne, Annu. Rev. Phys. Chem. 58, 267 (2007).
http://dx.doi.org/10.1146/annurev.physchem.58.032806.104607
5.
5.C. Escobedo, S. Vincent, A.I.K. Choudhury, J. Campbell, A.G. Brolo, D. Sinton, and R. Gordon, J. Micromechanics Microengineering 21, 115001 (2011).
http://dx.doi.org/10.1088/0960-1317/21/11/115001
6.
6.C. Escobedo, A.G. Brolo, R. Gordon, and D. Sinton, Nano Lett. 12, 1592 (2012).
http://dx.doi.org/10.1021/nl204504s
7.
7.Y.B. Zheng, B. Kiraly, P.S. Weiss, and T.J. Huang, Nanomedicine 7, 751 (2012).
http://dx.doi.org/10.2217/nnm.12.30
8.
8.B. Sepúlveda, P.C. Angelomé, L.M. Lechuga, and L.M. Liz-Marzán, Nano Today 4, 244 (2009).
http://dx.doi.org/10.1016/j.nantod.2009.04.001
9.
9.T. Chung, S.Y. Lee, E.Y. Song, H. Chun, and B. Lee, Sensors 11, 10907 (2011).
http://dx.doi.org/10.3390/s111110907
10.
10.K.M. Mayer and J.H. Hafner, Chem. Rev. 111, 3828 (2011).
http://dx.doi.org/10.1021/cr100313v
11.
11.W.L. Barnes, A. Dereux, and T.W. Ebbesen, Nature 424, 824 (2003).
http://dx.doi.org/10.1038/nature01937
12.
12.A. V. Zayats, I.I. Smolyaninov, and A.A. Maradudin, Phys. Rep. 408, 131 (2005).
http://dx.doi.org/10.1016/j.physrep.2004.11.001
13.
13.Y. Liu, H. Zhai, F. Guo, N. Huang, W. Sun, C. Bu, T. Peng, J. Yuan, and X. Zhao, Nanoscale 4, 6863 (2012).
http://dx.doi.org/10.1039/c2nr31954c
14.
14.B. Liu, Y. Liu, and S. Shen, Phys. Rev. B 90, 195411 (2014).
http://dx.doi.org/10.1103/PhysRevB.90.195411
15.
15.Y. Zhao, S.-C.S. Lin, A.A. Nawaz, B. Kiraly, Q. Hao, Y. Liu, and T.J. Huang, Opt. Express 18, 23458 (2010).
http://dx.doi.org/10.1364/OE.18.023458
16.
16.G. Si, Y. Zhao, H. Liu, S. Teo, M. Zhang, T. Jun Huang, A.J. Danner, and J. Teng, Appl. Phys. Lett. 99, 033105 (2011).
http://dx.doi.org/10.1063/1.3608147
17.
17.A.J. Haes, W.P. Hall, L. Chang, W.L. Klein, and R.P. Van Duyne, Nano Lett. 4, 1029 (2004).
http://dx.doi.org/10.1021/nl049670j
18.
18.C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, Nano Lett. 5, 709 (2005).
http://dx.doi.org/10.1021/nl050127s
19.
19.C.M. Cobley, J. Chen, E.C. Cho, L. V Wang, and Y. Xia, Chem. Soc. Rev. 40, 44 (2011).
http://dx.doi.org/10.1039/B821763G
20.
20.S. Link, S. Link, M.A. El-Sayed, and M. El-Sayed, J. Phys. Chem. B 103, 8410 (1999).
http://dx.doi.org/10.1021/jp9917648
21.
21.J.J. Mock, M. Barbic, D.R. Smith, D.A. Schultz, and S. Schultz, J. Chem. Phys. 116, 6755 (2002).
http://dx.doi.org/10.1063/1.1462610
22.
22.C.J. Murphy, T.K. Sau, A.M. Gole, C.J. Orendorff, J. Gao, L. Gou, S.E. Hunyadi, and T. Li, J. Phys. Chem. B 109, 13857 (2005).
http://dx.doi.org/10.1021/jp0516846
23.
23.N. Halas, MRS Bull. 30, 362 (2005).
http://dx.doi.org/10.1557/mrs2005.99
24.
24.S.E. Skrabalak, J. Chen, Y. Sun, X. Lu, L. Au, C.M. Cobley, and Y. Xia, Acc. Chem. Res. 41, 1587 (2008).
http://dx.doi.org/10.1021/ar800018v
25.
25.Z. Liu, J.M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, Nano Lett. 5, 1726 (2005).
http://dx.doi.org/10.1021/nl051013j
26.
26.J.L. Ponsetto, F. Wei, and Z. Liu, Nanoscale 6, 5807 (2014).
http://dx.doi.org/10.1039/c4nr00443d
27.
27.C. Yu, H. Nakshatri, and J. Irudayaraj, Nano Lett. 7, 2300 (2007).
http://dx.doi.org/10.1021/nl070894m
28.
28.C.R. Yonzon, E. Jeoung, S. Zou, G.C. Schatz, M. Mrksich, and R.P. Van Duyne, J. Am. Chem. Soc. 126, 12669 (2004).
http://dx.doi.org/10.1021/ja047118q
29.
29.D. Psaltis, S.R. Quake, and C. Yang, Nature 442, 381 (2006).
http://dx.doi.org/10.1038/nature05060
30.
30.F.B. Myers and L.P. Lee, Lab Chip 8, 2015 (2008).
http://dx.doi.org/10.1039/b812343h
31.
31.J. Kim, Lab Chip 12, 3611 (2012).
http://dx.doi.org/10.1039/c2lc40498b
32.
32.M.L. Sin, J. Gao, J.C. Liao, and P. Wong, J. Biol. Eng. 5, 6 (2011).
http://dx.doi.org/10.1186/1754-1611-5-6
33.
33.J. Atencia and D.J. Beebe, Nature 437, 648 (2005).
http://dx.doi.org/10.1038/nature04163
34.
34.C. Rivet, H. Lee, A. Hirsch, S. Hamilton, and H. Lu, Chem. Eng. Sci. 66, 1490 (2011).
http://dx.doi.org/10.1016/j.ces.2010.08.015
35.
35.H.A. Stone, A.D. Stroock, and A. Ajdari, Annu. Rev. Fluid Mech. 36, 381 (2004).
http://dx.doi.org/10.1146/annurev.fluid.36.050802.122124
36.
36.P. Domachuk, M. Cronin-Golomb, B. Eggleton, S. Mutzenich, G. Rosengarten, and A. Mitchell, Opt. Express 13, 7265 (2005).
http://dx.doi.org/10.1364/OPEX.13.007265
37.
37.K. Campbell, A. Groisman, U. Levy, L. Pang, S. Mookherjea, D. Psaltis, and Y. Fainman, Appl. Phys. Lett. 85, 6119 (2004).
http://dx.doi.org/10.1063/1.1839281
38.
38.A. Ozcelik, D. Ahmed, Y. Xie, N. Nama, Z. Qu, A.A. Nawaz, and T.J. Huang, Anal. Chem. 86, 5083 (2014).
http://dx.doi.org/10.1021/ac5007798
39.
39.D. Ahmed, C.Y. Chan, S.-C.S. Lin, H.S. Muddana, N. Nama, S.J. Benkovic, and T.J. Huang, Lab Chip 13, 328 (2013).
http://dx.doi.org/10.1039/C2LC40923B
40.
40.Q. Zeng, F. Guo, L. Yao, H.W. Zhu, L. Zheng, Z.X. Guo, W. Liu, Y. Chen, S.S. Guo, and X.Z. Zhao, Sensors Actuators B Chem. 160, 1552 (2011).
http://dx.doi.org/10.1016/j.snb.2011.08.075
41.
41.P. Rogers, I. Gralinski, C. Galtry, and A. Neild, Microfluid. Nanofluidics 14, 469 (2012).
http://dx.doi.org/10.1007/s10404-012-1065-9
42.
42.P. Agrawal, P.S. Gandhi, and A. Neild, J. Appl. Phys. 114, 114904 (2013).
http://dx.doi.org/10.1063/1.4821256
43.
43.A. Groisman, M. Enzelberger, and S.R. Quake, Science 300, 955 (2003).
http://dx.doi.org/10.1126/science.1083694
44.
44.Y.B. Zheng, B.K. Juluri, X. Mao, T.R. Walker, and T.J. Huang, J. Appl. Phys. 103 (2008).
45.
45.J.C. Hulteen, D.A. Treichel, M.T. Smith, M.L. Duval, T.R. Jensen, and R.P. Van Duyne, J. Phys. Chem. B 103, 3854 (1999).
http://dx.doi.org/10.1021/jp9904771
46.
46.Y. Xia and G.M. Whitesides, Annu. Rev. Mater. Sci. 28, 153 (1998).
http://dx.doi.org/10.1146/annurev.matsci.28.1.153
47.
47.W.L. Nyborg, J. Acoust. Soc. Am. 30, 329 (1958).
http://dx.doi.org/10.1121/1.1909587
48.
48.R.H. Liu, J. Yang, M.Z. Pindera, M. Athavale, and P. Grodzinski, Lab Chip 2, 151 (2002).
http://dx.doi.org/10.1039/b201952c
49.
49.J. Feng, J. Yuan, and S.K. Cho, Lab Chip 15, 1554 (2015).
http://dx.doi.org/10.1039/C4LC01266F
50.
50.K. Ryu, S.K. Chung, and S.K. Cho, J. Assoc. Lab. Autom. 15, 163 (2010).
http://dx.doi.org/10.1016/j.jala.2010.01.012
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/9/10.1063/1.4931641
Loading
/content/aip/journal/adva/5/9/10.1063/1.4931641
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/9/10.1063/1.4931641
2015-09-18
2016-09-28

Abstract

We acoustically modulated the localized surface plasmon resonances (LSPRs) of metal nanostructures integrated within microfluidic systems. An acoustically driven micromixing device based on bubble microstreaming quickly and homogeneously mixes multiple laminar flows of different refractive indices. The altered refractive index of the mixed fluids enables rapid modulation of the LSPRs of gold nanodisk arrays embedded within the microfluidic channel. The device features fast response for dynamic operation, and the refractive index within the channel is tailorable. With these unique features, our “acousto-plasmofluidic” device can be useful in applications such as optical switches, modulators, filters, biosensors, and lab-on-a-chip systems.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/9/1.4931641.html;jsessionid=Sn4bHeWnUiEi7GrfjzKW8bKg.x-aip-live-02?itemId=/content/aip/journal/adva/5/9/10.1063/1.4931641&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/9/10.1063/1.4931641&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/9/10.1063/1.4931641'
Right1,Right2,Right3,