Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/9/10.1063/1.4931791
1.
1.J. C. Hummelen, B. W. Knight, F. LePeq, F. Wudl, J. Yao, and C. L. Wilkins, J. Org. Chem. 60, 532 (1995).
http://dx.doi.org/10.1021/jo00108a012
2.
2.G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, Science 270, 1789 (1995).
http://dx.doi.org/10.1126/science.270.5243.1789
3.
3.W. Cao and J. Xue, Energ. Environ. Sci. 7, 2123 (2014).
http://dx.doi.org/10.1039/c4ee00260a
4.
4.J. Y. Kim and C. D. Frisbie, J. Phys. Chem. C 112, 17726 (2008).
http://dx.doi.org/10.1021/jp8061493
5.
5.M. T. Rispens, A. Meetsma, R. Rittberger, C. J. Brabec, N. S. Sariciftcib, and J. C. Hummelen, Chem. Commun. 17, 2116 (2003).
http://dx.doi.org/10.1039/b305988j
6.
6.X. Yang, J. K. L. van Duren, R. A. J. Janssen, M. A. J. Michels, and J. Loos, Macromolecules 37, 2151 (2004).
http://dx.doi.org/10.1021/ma035620+
7.
7.A. J. Moulé and K. Meerholz, Adv. Mater. 20, 240 (2008).
http://dx.doi.org/10.1002/adma.200701519
8.
8.T. Salim, L. H. Wong, B. Bräuer, R. Kukreja, Y. L. Foo, Z. Bao, and Y. M. Lam, J. Mater. Chem. 21, 242 (2011).
http://dx.doi.org/10.1039/C0JM01976C
9.
9.Y. M. Chang and L. Wang, J. Phys. Chem. C 112, 17716 (2008).
http://dx.doi.org/10.1021/jp804909a
10.
10.Y. Zhang, Z. Li, S. Wakim, S. Alem, S. W. Tsang, J. Lu, J. Ding, and Y. Tao, Org. Electron. 12, 1211 (2011).
http://dx.doi.org/10.1016/j.orgel.2011.04.001
11.
11.R. Ramani and S. Alam, Polymer 54, 6785 (2013).
http://dx.doi.org/10.1016/j.polymer.2013.10.023
12.
12.Y. Kim, S. A. Choulis, J. Nelson, D. D. C. Bradley, S. Cook, and J. R. Durrant, Appl. Phys. Lett. 86, 063502 (2005).
http://dx.doi.org/10.1063/1.1861123
13.
13.W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, Adv. Funct. Mater. 15, 1617 (2005).
http://dx.doi.org/10.1002/adfm.200500211
14.
14.A. Swinnen, I. Haeldermans, M. vande Ven, J. D’Haen, G. Vanhoyland, S. Aresu, M. D’Olieslaeger, and J. Manca, Adv. Funct. Mater. 16, 760 (2006).
http://dx.doi.org/10.1002/adfm.200500812
15.
15.M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, Prog. Photovolt: Res. Appl. 23, 1 (2015).
http://dx.doi.org/10.1002/pip.2573
16.
16.O. A. Guskova, S. R. Varanasi, and J.-U. Sommer, J. Chem. Phys. 141, 144303 (2014).
http://dx.doi.org/10.1063/1.4896559
17.
17.J. H. Choi, T. Honda, S. Seki, and S. Fukuzumi, Chem. Commun. 47, 11213 (2011).
http://dx.doi.org/10.1039/c1cc13228h
18.
18.J. M. Nápoles-Duarte, M. Reyes-Reyes, J. L. Ricardo-Chavez, R. Garibay-Alonso, and R. López-Sandoval, Phys. Rev. B 78, 035425 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.035425
19.
19.D. Écija, R. Otero, L. Sánchez, J. M. Gallego, Y. Wang, M. Alcamí, F. Martín, N. Martín, and R. Miranda, Angew. Chem. Int. Ed. 46, 7874 (2007).
http://dx.doi.org/10.1002/anie.200702531
20.
20.C. Müller, T. A. M. Ferenczi, M. Campoy-Quiles, J. M. Frost, D. D. C. Bradley, P. Smith, N. Stingelin-Stutzmann, and J. Nelson, Adv. Mater. 20, 3510 (2008).
http://dx.doi.org/10.1002/adma.200800963
21.
21.G. Paterno, A. J. Warren, J. Spencer, G. Evans, V. G. Sakai, J. Blumberger, and F. Cacialli, J. Mater. Chem. C 1, 5619 (2013).
http://dx.doi.org/10.1039/c3tc31075b
22.
22.E. Arunan, G. R. Desiraju, R. A. Klein, J. Sadlej, S. Scheiner, I. Alkorta, D. C. Clary, R. H. Crabtree, J. J. Dannenberg, P. Hobza, H. G. Kjaergaard, A. C. Legon, B. Mennucci, and D. J. Nesbitt, Pure Appl. Chem. 83, 1637 (2011).
23.
23.M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, and M. C. J. Payne, J. Phys.: Condens. Matter 14, 2717 (2002).
http://dx.doi.org/10.1088/0953-8984/14/11/301
24.
24.D. Vanderbilt, Phys. Rev. B 41, 7892 (1990).
http://dx.doi.org/10.1103/PhysRevB.41.7892
25.
25.J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
26.
26.G. P. Francis and M. C. Payne, J. Phys.: Condens. Matter 2, 4395 (1990).
http://dx.doi.org/10.1088/0953-8984/2/19/007
27.
27.B. Delley, J. Chem. Phys. 92, 508 (1990).
http://dx.doi.org/10.1063/1.458452
28.
28.B. Delley, J. Chem. Phys. 113, 7756 (2000).
http://dx.doi.org/10.1063/1.1316015
29.
29.M. Casalegno, S. Zanardi, F. Frigerio, R. Po, C. Carbonera, G. Marra, T. Nicolini, G. Raos, and S. V. Meille, Chem. Commun. 49, 4525 (2013).
http://dx.doi.org/10.1039/c3cc40863a
30.
30.B. K. Saha, S. Aitipamula, R. Banerjee, A. Nangia, R. K. R. Jetti, R. Boese, C. K. Lam, and T. C. W. Mak, Mol. Cryst. Liq. Cryst. 440, 295 (2005).
http://dx.doi.org/10.1080/15421400590958601
31.
31.Y. Sonoda, M. Goto, T. Ikeda, Y. Shimoi, S. Hayashi, H. Yamawaki, and M. Kanesato, J. Mol. Struct. 1006, 366 (2011).
http://dx.doi.org/10.1016/j.molstruc.2011.09.033
32.
32.M. P. M. Marques, A. M. Amorim da Costa, and P. J. A. Ribeiro-Claro, J. Phys. Chem. A 105, 5292 (2001).
http://dx.doi.org/10.1021/jp0046041
33.
33.E. Arunan, G. R. Desiraju, R. A. Klein, J. Sadlej, S. Scheiner, I. Alkorta, D. C. Clary, R. H. Crabtree, J. J. Dannenberg, P. Hobza, H. G. Kjaergaard, A. C. Legon, B. Mennucci, and D. J. Nesbitt, Pure Appl. Chem. 83, 1619 (2011).
34.
34.R. Ramani and S. Alam, Polymer 54, 6785 (2013).
http://dx.doi.org/10.1016/j.polymer.2013.10.023
35.
35.B. W. Larson, J. B. Whitaker, A. A. Popov, N. Kopidakis, G. Rumbles, O. V. Boltalina, and S. H. Strauss, Chem. Mater. 26, 2361 (2014).
http://dx.doi.org/10.1021/cm500594u
36.
36.J. Y. Kim and C. D. Frisbie, J. Phys. Chem. C 112, 17726 (2008).
http://dx.doi.org/10.1021/jp8061493
37.
37.J. Zhao, A. Swinnen, G. V. Assche, J. Manca, D. Vanderzande, and B. V. Mele, J. Phys. Chem. B 113, 1587 (2009).
http://dx.doi.org/10.1021/jp804151a
38.
38.T. T. Ngo, D. N. Nguyen, and V. T. Nguyen, Adv. Nat. Sci.: Nanosci. Nanotechnol. 3, 045001 (2012).
http://dx.doi.org/10.1088/2043-6262/3/4/045001
39.
39.J. Maibach, T. Adermann, T. Glaser, R. Eckstein, E. Mankel, A. Pucci, K. Müllen, U. Lemmer, M. Hamburger, T. Mayer, and W. Jaegermann, J. Mater. Chem. C 2, 7934 (2014).
http://dx.doi.org/10.1039/C4TC00769G
40.
40.J. Max and C. Chapadosb, J. Chem. Phys. 122, 014504 (2005).
http://dx.doi.org/10.1063/1.1790431
41.
41.F. Piersimoni, S. Chambon, K. Vandewal, R. Mens, T. Boonen, A. Gadisa, M. Izquierdo, S. Filippone, B. Ruttens, J. D’Haen, N. Martin, L. Lutsen, D. Vanderzande, P. Adriaensens, and J. V. Manca, J. Phys. Chem. C 115, 10873 (2011).
http://dx.doi.org/10.1021/jp110982m
42.
42.M. M. Wienk, J. M. Kroon, W. J. H. Verhees, J. Knol, J. C. Hummelen, P. A. van Hal, and R. A. J. Janssen, Angew. Chem. Int. Ed. 42, 3371 (2003).
http://dx.doi.org/10.1002/anie.200351647
43.
43.L. H. Tjeng, R. Hesper, A. C. L. Heessels, A. Heeres, H. T. Jonkman, and G. A. Sawatzky, Solid State Commun. 103, 31 (1997).
http://dx.doi.org/10.1016/S0038-1098(97)00126-9
44.
44.H. N. Li, X. X. Wang, S. L. He, K. Ibrahim, H. J. Qian, R. Su, J. Zhong, M. I. Abbas, and C. H. Hong, Surf. Sci. 586, 65 (2005).
http://dx.doi.org/10.1016/j.susc.2005.04.053
45.
45.G. Tregnago, M. Wykes, G. M. Paternò, D. Beljonne, and F. Cacialli, J. Phys. Chem. C 119, 11846 (2015).
http://dx.doi.org/10.1021/acs.jpcc.5b02345
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/9/10.1063/1.4931791
Loading
/content/aip/journal/adva/5/9/10.1063/1.4931791
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/9/10.1063/1.4931791
2015-09-22
2016-12-08

Abstract

We have studied the hydrogen bonds in PC BM solids. Inter-molecular interaction is analyzed theoretically for the well-defined monoclinic (P2/n) structure. The results indicate that PC BM combines into C–H⋯O bonded molecular chains, where O denotes the doubly-bonded O atom of PC BM. The molecular chains are linked together by C–H⋯O bonds, where O denotes the singly-bonded O atom of PC BM. To reveal the consequences of hydrogen bond formation on the structural properties of PC BM solids (not limited to the monoclinic structure), we design and perform some experiments for annealed samples with the monoclinic (P2/n) PC BM as starting material. The experiments include differential scanning calorimetry, X-ray diffraction and infrared absorption measurements. Structural phase transitions are observed below the melting point. The C–H⋯O bonds seem persisting in the altered structures. The inter-molecular hydrogen bonds can help to understand the phase separation in polymer/PCBM blends and may be responsible for the existence of liquid PC BM.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/9/1.4931791.html;jsessionid=6Rzq_kAta4e7UAIIAcwSt8uy.x-aip-live-06?itemId=/content/aip/journal/adva/5/9/10.1063/1.4931791&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/9/10.1063/1.4931791&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/9/10.1063/1.4931791'
Right1,Right2,Right3,