Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/9/10.1063/1.4931812
1.
1.J. D. Murnaghan, Proc. Natl. Acad. Sci. U.S.A. 30, 244 (1944).
http://dx.doi.org/10.1073/pnas.30.9.244
2.
2.F. Birch, J. Geophys. Res.: Space Phys. 83, 1257 (1978).
http://dx.doi.org/10.1029/JB083iB03p01257
3.
3.J. P. Poirier and A. Tarantola, Phys. Earth Planet. Inter. 109, 1 (1998).
http://dx.doi.org/10.1016/S0031-9201(98)00112-5
4.
4.P. Vinet, J. Ferrante, J. R. Smith, and J.H. Rose, J. Phys. C. Solid State Phys. 19, L467 (1986).
http://dx.doi.org/10.1088/0022-3719/19/20/001
5.
5.P. Vinet, J. H. Rose, J. Ferrante, and J.R. Smith, J. Phys.: Condens. Matter 1, 1941 (1989).
http://dx.doi.org/10.1088/0953-8984/1/11/002
6.
6.J. Abdallah, Jr., Los Alamos National Laboratory Report No. LA-10244-M, September,1984.
7.
7.R.M. More, K.H. Warrren, D. A. Young, and G. B. Zimmerman, Phys. Fluids 31, 3059 (1988).
http://dx.doi.org/10.1063/1.866963
8.
8.A.V. Bushmann, I.V. Lomonosov, and E. V. Fortov, Sov.Tech. Rev. B. Therm. Rev. 5, 1 (1993).
9.
9.G. I. Kerley, Sandia National Laboratories Report No. SAND88-2291, February,1994.
10.
10.I. C. Sanchez, J. Cho, and W. J. Chen, Macromoleculars 26, 4324 (1993).
http://dx.doi.org/10.1021/ma00068a025
11.
11.V. G. Baonza, M. Cáceres, and J. Núñez, J. Phys. Chem. 98, 4955 (1994).
http://dx.doi.org/10.1021/j100070a001
12.
12.V. G. Baonza, M. Cáceres, and J. Núñez, Phys. Rev. B 51, 28 (1995).
http://dx.doi.org/10.1103/PhysRevB.51.28
13.
13.V. G. Baonza, M. Taravillo, M. Cáceres, and J. Núñez, Phys. Rev. B 53, 5252 (1996).
http://dx.doi.org/10.1103/PhysRevB.53.5252
14.
14.G. Shen, N. Sata, M. Newville, M.L. Rivers, and S.R. Sutton, Appl. Phys. Lett. 81, 1411 (2002).
http://dx.doi.org/10.1063/1.1499737
15.
15.G. Shen, N. Sata, N. Taberlet, M. Newville, M. L. Rivers, and S. R. Sutton, J. Phys.: Condens. Matter. 14, 10533 (2002).
http://dx.doi.org/10.1088/0953-8984/14/44/328
16.
16.J. H. Hildebrand and R. L. Scott, Solubility of Non-electrolytes (Reinhold, New York, 1950).
17.
17.D. L. Anderson, Phys. Earth Planet. Int. 45, 307 (1987).
http://dx.doi.org/10.1016/0031-9201(87)90039-2
18.
18.G. Shen, N. Sata, M. L. Rivers, and S. R. Sutton, Appl. Phys. Lett. 78, 3208 (2001).
http://dx.doi.org/10.1063/1.1374497
19.
19.M. L. McDaniel, S. E. Babb, Jr., and G. J. Scott, J. Chem. Phys. 37, 822 (1962).
http://dx.doi.org/10.1063/1.1733167
20.
20.J. Kato, T. Komabayashi, K. Hirose, A. Q. Baron, S. Tsutsui, and Y. Ohishi, “Velocity-density systematics of liquid indium and the validity of Birch’s law for a liquid metal,” American Geophysical Union, Fall Meeting 2011 abstract #MR51B-2175.
21.
21.D. P. Almond and S. J. Blairs, J. Chem. Thermodyn. 12, 1105 (1980).
http://dx.doi.org/10.1016/S0021-9614(80)80001-2
22.
22.M. A. McClelland and J. S. Sze, Surf. Sci. 330, 313 (1995).
http://dx.doi.org/10.1016/0039-6028(95)00358-4
23.
23.J. Amoros, J. R. Solana, and E. Villar, Mater. Chem. Phys. 10, 557 (1984).
http://dx.doi.org/10.1016/0254-0584(84)90005-1
24.
24.O. J. Anderson, J. Geophys. Res. 79, 1153 (1974).
http://dx.doi.org/10.1029/JB079i008p01153
25.
25.J. W. Shaner, R. S. Hixson, M. A. Winkler, D. A. Boness, and J. M. Brown, in Shock Waves in Condensed Matter 1987, edited by S. C. Schmidt and N. C. Holmes (Elsevier Science Publishers, 1988), p. 135.
26.
26.K. Takemura, Phys. Rev. B 44, 545 (1991).
http://dx.doi.org/10.1103/PhysRevB.44.545
27.
27.O. Schulte and W.B. Holzapfel, Phys. Rev. B 48, 767 (1993).
http://dx.doi.org/10.1103/PhysRevB.48.767
28.
28.E. Brosh, G. Makov, and R.Z. Shneck, J. Phys.: Condens. Matter 15, 2991 (2003).
http://dx.doi.org/10.1088/0953-8984/15/19/303
29.
29.J.H. Hildebrand, Viscosity and Diffusivity: A Predictive Treatment (Wiley, New-York, 1977).
30.
30.H. Ocken and C. N. J. Wagner, Phys. Rev. 149, 122 (1966).
http://dx.doi.org/10.1103/PhysRev.149.122
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/9/10.1063/1.4931812
Loading
/content/aip/journal/adva/5/9/10.1063/1.4931812
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/9/10.1063/1.4931812
2015-09-22
2016-10-01

Abstract

We apply an equation of state of a power law form to liquid Indium to study its thermodynamic properties under high temperature and high pressure. Molar volume of molten indium is calculated along the isothermal line at 710K within good precision as compared with the experimental data in an externally heated diamond anvil cell. Bulk modulus, thermal expansion and internal pressure are obtained for isothermal compression. Other thermodynamic properties are also calculated along the fitted high pressure melting line. While our results suggest that the power law form may be a better choice for the equation of state of liquids, these detailed predictions are yet to be confirmed by further experiment.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/9/1.4931812.html;jsessionid=1YgaZHSQnAfWZX4R8bk0FPyE.x-aip-live-06?itemId=/content/aip/journal/adva/5/9/10.1063/1.4931812&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/9/10.1063/1.4931812&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/9/10.1063/1.4931812'
Right1,Right2,Right3,