Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.G. Catalan and J. F. Scott, Adv. Mater. 21, 2463 (2009).
2.M. Polomska, W. Kaczmarek, and Z. Pająk, Phys. Status Solidi A 23, 567 (1974).
3.F. Kubel and H. Schmid, Acta Crystallogr B 46, 698 (1990).
4.W. Eerenstein, N. D. Mathur, and J. F. Scott, Nature 442, 759 (2006).
5.S. Y. Yang, L. W. Martin, S. J. Byrnes, T. E. Conry, S. R. Basu, D. Paran, L. Reichertz, J. Ihlefeld, C. Adamo, A. Melville, Y.-H. Chu, C.-H. Yang, J. L. Musfeldt, D. G. Schlom, J. W. Ager, and R. Ramesh, Appl. Phys. Lett. 95 (2009).
6.J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, Science 299, 1719 (2003).
7.S. H. Baek, H. W. Jang, C. M. Folkman, Y. L. Li, B. Winchester, J. X. Zhang, Q. He, Y. H. Chu, C. T. Nelson, M. S. Rzchowski, X. Q. Pan, R. Ramesh, L. Q. Chen, and C. B. Eom, Nat Mater 9, 309 (2010).
8.S. M. Selbach, M.-A. Einarsrud, and T. Grande, Chem. Mater. 21, 169 (2008).
9.T. Rojac, M. Kosec, B. Budic, N. Setter, and D. Damjanovic, J. Appl. Phys. 108 (2010).
10.T. Rojac, M. Kosec, and D. Damjanovic, J. Am. Ceram. Soc. 94, 4108 (2011).
11.J. Silva, A. Reyes, H. Esparza, H. Camacho, and L. Fuentes, Integr Ferroelectr 126, 47 (2011).
12.X. Qi, P.-C. Tsai, Y.-C. Chen, Q.-R. Lin, J.-C.-A. Huang, W.-C. Chang, and I.-G. Chen, Thin Solid Films 517, 5862 (2009).
13.H. Béa, M. Bibes, A. Barthélémy, K. Bouzehouane, E. Jacquet, A. Khodan, J.-P. Contour, S. Fusil, F. Wyczisk, A. Forget, D. Lebeugle, D. Colson, and M. Viret, Appl. Phys. Lett. 87 (2005).
14.T. Liu, Y. Xu, and J. Zhao, J. Am. Ceram. Soc. 93, 3637 (2010).
15.Y.-H. Lin, M. Li, C.-W. Nan, J. Li, J. Wu, and J. He, Appl. Phys. Lett. 89, 032907 (2006).
16.R. Waser and R. Hagenbeck, Acta Mater. 48, 797 (2000).
17.P. Thongbai, C. Masingboon, S. Maensiri, T. Yamwong, S. Wongsaenmai, and R. Yimnirun, J. Phys.: Condens. Matter 19, 236208 (2007).
18.S. Maensiri, P. Thongbai, and T. Yamwong, Appl. Phys. Lett. 90, 202908 (2007).
19.C. Masingboon, S. Maensiri, T. Yamwong, P. L. Anderson, and S. Seraphin, Appl. Phys. A 91, 87 (2007).
20.C. Masingboon, P. Thongbai, S. Maensiri, T. Yamwong, and S. Seraphin, Mater. Chem. Phys. 109, 262 (2008).
21.D. C. Sinclair, T. B. Adams, F. D. Morrison, and A. R. West, Appl. Phys. Lett. 80, 2153 (2002).
22.M. C. Ferrarelli, T. B. Adams, A. Feteira, D. C. Sinclair, and A. R. West, Appl. Phys. Lett. 89, 212904 (2006).
23.W. Cai, C. Fu, G. Chen, X. Deng, K. Liu, and R. Gao, J. Mater. Sci. - Mater. Electron. 25, 4841 (2014).
24.A. Mahapatra, S. Parida, S. Sarangi, and T. Badapanda, JOM (2014).
25.W. Cai, C. Fu, W. Hu, G. Chen, and X. Deng, J. Alloys Compd. 554, 64 (2013).
26.S. Katlakunta, P. Raju, S. S. Meena, S. Srinath, R. Sandhya, P. Kuruva, and S. R. Murthy, Physica B Condens Matter 448, 323 (2014).
27.S. Mohammadi, H. Shokrollahi, and M. H. Basiri, J. Magn. Magn. Mater. 375, 38 (2015).
28.V. Raghavendra Reddy, D. Kothari, S. Kumar Upadhyay, A. Gupta, N. Chauhan, and A. M. Awasthi, Ceram. Int. 40, 4247 (2014).
29.S. Mahajan, O. P. Thakur, D. K. Bhattacharya, and K. Sreenivas, J. Am. Ceram. Soc. 92, 416 (2009).
30.J. Rodríguez-Carvajal, Physica B Condens Matter 192, 55 (1993).
31.T. Rojac, A. Bencan, B. Malic, G. Tutuncu, J. L. Jones, J. E. Daniels, and D. Damjanovic, J. Am. Ceram. Soc. 97, 1993 (2014).
32.S. H. Song, Q. S. Zhu, L. Q. Weng, and V. R. Mudinepalli, J. Eur. Ceram. Soc. 35, 131 (2015).
33.S. Hunpratub, P. Thongbai, T. Yamwong, R. Yimnirun, and S. Maensiri, Appl. Phys. Lett. 94, 062904 (2009).
34.J. W. Chen, J. C. Wang, and Y. F. Chen, Physica C Supercond 289, 131 (1997).
35.F. Kremer and A. Schonhals, Broadband Dielectric Spectroscopy (Springer, Berlin Heidelberg, 2003).
36.C. C. Wang, Y. M. Cui, G. L. Xie, C. P. Chen, and L. W. Zhang, Phys. Rev. B 72, 064513 (2005).
37.R. K. Mishra, D. K. Pradhan, R. N. P. Choudhary, and A. Banerjee, J. Phys.: Condens. Matter 20, 045218 (2008).
38.A. Gautam, K. Singh, K. Sen, R. K. Kotnala, and M. Singh, J. Alloys Compd. 517, 87 (2012).
39.S. Ke, P. Lin, X. Zeng, H. Huang, L. M. Zhou, and Y. W. Mai, Ceram. Int. 40, 5263 (2014).
40.A. K. Pradhan, K. Zhang, D. Hunter, J. B. Dadson, G. B. Loiutts, P. Bhattacharya, R. Katiyar, J. Zhang, D. J. Sellmyer, U. N. Roy, Y. Cui, and A. Burger, J. Appl. Phys. 97, 093903 (2005).
41.Q.-h. Jiang, C.-w. Nan, Y. Wang, Y.-h. Liu, and Z.-j. Shen, J. Electroceram. 21, 690 (2008).
42.S. Vijayanand, H. S. Potdar, and P. A. Joy, Appl. Phys. Lett. 94, 182507 (2009).
43.K. S. Cole and R. H. Cole, J Chem Phys 9, 341 (1941).
44.A. K. Jonscher, Nature 267, 673 (1977).
45.S. Kabi and A. Ghosh, J. Appl. Phys. 107, 103715 (2010).
46.A. Singh, R. Chatterjee, S. K. Mishra, P. S. R. Krishna, and S. L. Chaplot, J. Appl. Phys. 111, 014113 (2012).
47.A. Ghosh, Phys. Rev. B 42, 1388 (1990).
48.D. Rajasree, S. Tanushree, and K. Mandal, J. Phys. D: Appl. Phys. 45, 455002 (2012).
49.H. Wu, Y. B. Lin, J. J. Gong, F. Zhang, M. Zeng, M. H. Qin, Z. Zhang, Q. Ru, Z. W. Liu, X. S. Gao, and J. M. Liu, J. Phys. D: Appl. Phys. 46, 145001 (2013).
50.P. Salame, R. Drai, O. Prakash, and A. Kulkarni, Ceram. Int. 40, 4491 (2013).
51.P. Salame, O. Prakash, and A. Kulkarni, J. Am. Ceram. Soc. 96, 2184 (2013).
52.S. I. R. Costa, M. Li, J. R. Frade, and D. C. Sinclair, RSC Adv 3, 7030 (2013).
53.T. B. Adams, D. C. Sinclair, and A. R. West, Phys. Rev. B 73, 094124 (2006).
54.J. T. S. Irvine, D. C. Sinclair, and A. R. West, Adv. Mater. 2, 132 (1990).
55.A. Makhdoom, M. Akhtar, R. Khan, M. Rafiq, M. Hasan, F. Sher, and A. Fitch, Mater. Chem. Phys. 143, 256 (2013).

Data & Media loading...


Article metrics loading...



In this paper, major reduction in sintering time,temperautre and significant improvement over final density of sitnered sample is reported for the microwave sintered nanocrystalline BiFeO (BFO) ceramic. Also, different sintering time and temperatures have been used to tailor the grain size and the final density of the resulting BFO ceramics synthesized from phase pure BFO nanoparticles ( ). Microwave sintering resulted in reducing the sintering time substantially (by 1h), and has resulted in submicron sized grains and high resistivity ∼1.8 GΩ-cm. The AC conductivity is seen to follow the Jonscher’s power law behavior, suggesting correlated barrier hopping (CBH) mechanism in the sample. The role of oxygen vacancies at high temperature, due to volatility of bismuth, in dielectric and conductivity behavior is also discussed. Further, the sample displayed dielectric anomaly near magnetic transition temperature (∼180 °C) indicating bearing of magnetic moments on the dielectric properties. Using Impedance Spectroscopy (IS) we have established, the electrical heterogeneity of the ceramic BFO reavealing semiconducting nature of grains and insulating nature of grain boundary. This, formation of network of insulating grain boundaries and semiconducting grains could lead to formation of internal barrier layer capacitance (IBLC) leading to high dielectric constant in microwave sintered BFO.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd