Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/9/10.1063/1.4931820
1.
1.F. J. DiSalvo, Science 285, 703 (1999).
http://dx.doi.org/10.1126/science.285.5428.703
2.
2.G. J. Snyder and E. S. Toberer, Nature Mater. 7, 105 (2008).
http://dx.doi.org/10.1038/nmat2090
3.
3.J. C. Zheng, Front. Phys. China 3, 269 (2008).
http://dx.doi.org/10.1007/s11467-008-0028-9
4.
4.B. C. Sales, D. Mandrus, and R. K. Williams, Science 272, 1325 (1996).
http://dx.doi.org/10.1126/science.272.5266.1325
5.
5.B. Poudel, Q. Hao, Y. Ma, Y.C. Lan, and A. Minnich, Science 320, 634 (2008).
http://dx.doi.org/10.1126/science.1156446
6.
6.Y. Z. Pei, X. Shi, A. LaLonde, H. Wang, L. D. Chen, and G. J. Snyder, Nature (London) 473, 66 (2011).
http://dx.doi.org/10.1038/nature09996
7.
7.R. Venkatasubramanian et al., Nature (London) 413, 597 (2001).
http://dx.doi.org/10.1038/35098012
8.
8.C. J. Vineis, A. Shakouri, A. Majumdar, and M. G. Kanatzidis, Adv. Mater. 22, 3970 (2010).
http://dx.doi.org/10.1002/adma.201000839
9.
9.J. S. Rhyee, K. H. Lee, S. M. Lee, E. Cho, S. I. Kim, E. Lee, Y. S. Kwon, J. H. Shim, and G. Kotliar, Nature (London) 459, 965 (2009).
http://dx.doi.org/10.1038/nature08088
10.
10.H. Liu, X. Shi, F. Xu, L. Zhang, W. Zhang, L. Chen, Q. Li, C. Uher, T. Day, and G. J. Snyder, Nat. Mater. 11, 422 (2012).
http://dx.doi.org/10.1038/nmat3273
11.
11.D.C. Look, Mater. Sci. Eng. B 80, 383 (2001).
http://dx.doi.org/10.1016/S0921-5107(00)00604-8
12.
12.D.M. Bagnall, Y.R. Chen, Z. Zhu, T. Yao, S. Koyama, M.Y. Shen et al., Appl. Phys. Lett. 70, 2230 (1997).
http://dx.doi.org/10.1063/1.118824
13.
13.J.M. McGarrity, F.B. McLean, W.M. DeLancey, J.W. Palmour, C.H. Carter, Jr., and J.A. Edmond, IEEE Trans. Nucl. Sci. 39, 1974 (1992).
http://dx.doi.org/10.1109/23.211393
14.
14.M. Wraback, H. Shen, S. Liang, C.R. Gorla, and Y. Lu, Appl. Phys. Lett 74, 507 (1999).
http://dx.doi.org/10.1063/1.124223
15.
15.J.M. Lee, K.K. Kim, S.J. Park, and W.K. Choi, Appl. Phys. Lett 78, 2842 (2001).
16.
16.K. Koumoto, M. Shimohigoshi, S. Takeda, and H. Yanagida, J. Mater. Sci. Lett. 6, 1453 (1987).
http://dx.doi.org/10.1007/BF01689320
17.
17.K. F. Cai, J. P. Liu, C. W. Nan, and X. M. Min, J. Mater. Sci. Letts. 16, 1876 (1997).
http://dx.doi.org/10.1023/A:1018557827330
18.
18.W. L. Liu and A. A. Balandin, J. Appl. Phys. 97, 123705 (2005).
http://dx.doi.org/10.1063/1.1927691
19.
19.C. Lee, G. C. Yi, Y. M. Zuev, and P. Kim, Appl. Phys. Lett. 94, 022106 (2009).
http://dx.doi.org/10.1063/1.3067868
20.
20.K. Hiruma, M. Yazawa, K. Haraguchi, K. Ogawa, T. Katsuyama, M. Koguchi, and H. Kakibayashi, J. Appl. Phys. 74, 3162 (1993).
http://dx.doi.org/10.1063/1.354585
21.
21.R. Leitsmann and F. Bechstedt, J. Appl. Phys. 102, 063528 (2007).
http://dx.doi.org/10.1063/1.2783899
22.
22.N. W. Jepps and T. F. Page, Prog. Cryst. Growth Charact. Mater. 7, 259 (1983).
http://dx.doi.org/10.1016/0146-3535(83)90034-5
23.
23.W. R. L. Lambrecht, B. Segall, M. Methfessel, and M. van Schilfgaarde, Phys. Rev. B. 44, 3685 (1991).
http://dx.doi.org/10.1103/PhysRevB.44.3685
24.
24.P. Käckell, B. Wenzien, and F. Bechstedt, Phys. Rev. B. 50, 17037 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.17037
25.
25.C. H. Park, B. H. Cheong, K. H. Lee, and K. J. Chang, Phys. Rev. B. 49, 4485 (1994).
http://dx.doi.org/10.1103/PhysRevB.49.4485
26.
26.P. Giannozzi et al., J. Phys.: Condens. Matter 21, 395502 (2009).
http://dx.doi.org/10.1088/0953-8984/21/39/395502
27.
27.J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
28.
28.G. K. H. Madsen and D. J. Singh, Comput. Phys. Commun. 175, 67 (2006).
http://dx.doi.org/10.1016/j.cpc.2006.03.007
29.
29.G. K. H. Madsen, J. Am. Chem. Soc. 128, 12140 (2006).
http://dx.doi.org/10.1021/ja062526a
30.
30.P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties (Vienna University of Technology, Austria, 2001).
31.
31.M. S. Hybertsen and S. G. Louie, Phys. Rev. B. 34, 5390 (1986).
http://dx.doi.org/10.1103/PhysRevB.34.5390
32.
32.T. Y. and J.C. Zheng, Chem. Phys. Lett. 501, 47 (2010).
http://dx.doi.org/10.1016/j.cplett.2010.10.055
33.
33.T.Y. , X.X. Liao, H.Q. Wang, and J.C. Zheng, J. Mater. Chem. 22, 10062 (2012).
http://dx.doi.org/10.1039/c2jm30915g
34.
34.L. Xu, Y. Zheng, and J.C. Zheng, Phys. Rev. B. 82, 195102 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.195102
35.
35.L. Xu, H.Q. Wang, and J.C. Zheng, J. Electron.Mater. 40, 641 (2011).
http://dx.doi.org/10.1007/s11664-010-1491-y
36.
36.Y.L. Li, Z. Fan, and J.C. Zheng, J. Appl. Phys. 113, 083705 (2013).
http://dx.doi.org/10.1063/1.4792469
37.
37.F. Birch, Phys. Rev. 71, 809 (1947).
http://dx.doi.org/10.1103/PhysRev.71.809
38.
38.P. E. Van Camp, V. E. Van Doren, and J. T. Devreese, Phys. Rev. B. 34, 1314 (1986);
http://dx.doi.org/10.1103/PhysRevB.34.1314
38.S. Fahy, K. J. Chang, S. G. Louie, and M. L. Cohen, Phys. Rev. B. 35, 5856 (1987).
http://dx.doi.org/10.1103/PhysRevB.35.5856
39.
39. von Münch, in Landolt-Börnstein, New Series, Group of IV and III-V, Vol 17, Pt. A edited by O. Madelung, M. Schulz, and H. Weiss (Springer, Berlin, 1982), and references therein.
40.
40.L. C. de Carvalho, A. Schleife, and F. Bechstedt, Phys. Rev. B. 84, 195105 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.195105
41.
41.H. Landolt and R. Börnstein, Numerical Data and Functional Relationships in Science and Technology (Springer-Verlag, Berlin, 1982), Vol. III No. 17a and 22a.
42.
42.M. E. Sherwin and T. J. Drummond, J. Appl. Phys. 69, 8423 (1991).
http://dx.doi.org/10.1063/1.347412
43.
43.H. Schulz and K. H. Thiemann, Solid State Commun 23, 815 (1977).
http://dx.doi.org/10.1016/0038-1098(77)90959-0
44.
44.R. D. Carnahan, J. Am. Ceram. Soc. 51, 223 (1968).
http://dx.doi.org/10.1111/j.1151-2916.1968.tb11877.x
45.
45.Q. Xia, H. Xia, and A. L. Ruoff, J. Appl. Phys. 73, 8198 (1993).
http://dx.doi.org/10.1063/1.353435
46.
46.F. Bechstedt and A. Belabbes, J. Phys.: Condens. Matter 25, 273201 (2013).
http://dx.doi.org/10.1088/0953-8984/25/27/273201
47.
47.J. E. Jaffe, J.A. Snyder, Z. Lin, and A.C. Hess, Phys. Rev. B. 62, 1660 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.1660
48.
48.W.H. Bragg and J.A. Darbyshire, J. Meteorol. 6, 238 (1954).
49.
49.S. Desgreniers, Phys. Rev. B. 58, 14102 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.14102
50.
50.H. P. Maruska and J. J. Tietjen, Appl. Phys. Lett. 15, 327 (1969).
http://dx.doi.org/10.1063/1.1652845
51.
51.D. Vogel, P. Krüger, and J. Pollmann, Phys. Rev. B. 52, R14316 (1995).
http://dx.doi.org/10.1103/PhysRevB.52.R14316
52.
52.C. Stampfl and C. G. Van de Walle, Phys. Rev. B. 59, 5521 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.5521
53.
53.K. P. Ong, D. J. Singh, and P. Wu, Phys. Rev. B. 83, 115110 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.115110
54.
54.N.W. Ashcroft and N. D. Mermin, Solid State Physics (Saunders College, Orlando, Florida, 1976).
55.
55.G. D. Mahan and J. O. Sofo, Proc. Natl. Acad. Sci. USA. 93, 7436 (1996).
http://dx.doi.org/10.1073/pnas.93.15.7436
56.
56.Z. Fan, H. Q. Wang, and J. C. Zheng, J. Appl. Phys. 109, 073713 (2011).
http://dx.doi.org/10.1063/1.3563097
57.
57.W.T. Wu, K. C. Wu, Z. J. Ma, R. J. Sa, Y. Q. Wei, and Q. H. Li, Chin. J. Struct. Chem. 11, 1613 (2012).
58.
58.G. A. Slack, J. Appl. Phys. 35, 3460 (1964).
http://dx.doi.org/10.1063/1.1713251
59.
59.L. Pauling, The Nature of the Chemical Bond, 3rd ed. (Cornell University Press, Ithaca, 1960).
60.
60.J. C. Phillips, Rev. Mod. Phys. 42, 317 (1970).
http://dx.doi.org/10.1103/RevModPhys.42.317
61.
61.K. Sarasamak, S. Limpijumnong, and W. R. L. Lambrecht, Phys. Rev. B. 82, 035201 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.035201
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/9/10.1063/1.4931820
Loading
/content/aip/journal/adva/5/9/10.1063/1.4931820
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/9/10.1063/1.4931820
2015-09-22
2016-12-03

Abstract

We have investigated the thermoelectric properties of the 3C, 2H, 4H, and 6H polytypes of the wide-band-gap(n-type) semiconductors SiC, GaN, and ZnO based on first-principles calculations and Boltzmann transport theory. Our results show that the thermoelectric performance increases from 3C to 6H, 4H, and 2H structures with an increase of hexagonality for SiC. However, for GaN and ZnO, their power factors show a very weak dependence on the polytype. Detailed analysis of the thermoelectric properties with respect to temperature and carrier concentration of 4H-SiC, 2H-GaN, and 2H-ZnO shows that the figure of merit of these three compounds increases with temperature, indicating the promising potential applications of these thermoelectric materials at high temperature. The significant difference of the polytype-dependent thermoelectric properties among SiC, GaN, and ZnO might be related to the competition between covalency and ionicity in these semiconductors. Our calculations may provide a new way to enhance the thermoelectric properties of wide-band-gap semiconductors through atomic structure design, especially hexagonality design for SiC.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/9/1.4931820.html;jsessionid=9vvWQn5A_x603ozRFotEIhJh.x-aip-live-02?itemId=/content/aip/journal/adva/5/9/10.1063/1.4931820&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/9/10.1063/1.4931820&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/9/10.1063/1.4931820'
Right1,Right2,Right3,