Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/9/10.1063/1.4931821
1.
1.M. Taguchi, A. Yano, and S. Tohoda, IEEE J. Photovoltaics 4, 96 (2014).
http://dx.doi.org/10.1109/JPHOTOV.2013.2282737
2.
2.T. Mishima, M. Taguchi, H. Sakata, and E. Maruyama, Sol. Energy Mater. Sol. Cells 95, 18 (2011).
http://dx.doi.org/10.1016/j.solmat.2010.04.030
3.
3.S. De Wolf, A. Descoeudres, Z.C. Holman, and C. Ballif, Green 2, 7 (2012).
http://dx.doi.org/10.1515/green-2011-0018
4.
4.K. Masuko, M. Shigematsu, T. Hashiguchi, D. Fujishima, M. Kai, N. Yoshimura, T. Yamaguchi, Y. Ichihashi, T. Mishima, N. Matsubara, T. Yamanishi, T. Takahama, M. Taguchi, E. Maruyama, and S. Okamoto, IEEE J. Photovoltaics 4, 1433 (2014).
http://dx.doi.org/10.1109/JPHOTOV.2014.2352151
5.
5.H. Fujiwara and M. Kondo, J. Appl. Phys. 101, 054516 (2007).
http://dx.doi.org/10.1063/1.2559975
6.
6.R. Rizzoli, E. Centurioni, J. Plá, C. Summonte, a Migliori, a Desalvo, and F. Zignani, J. Non. Cryst. Solids 299-302, 1203 (2002).
http://dx.doi.org/10.1016/S0022-3093(01)01088-2
7.
7.M. Taguchi, K. Kawamoto, S. Tsuge, T. Baba, H. Sakata, M. Morizane, K. Uchihashi, N. Nakamura, S. Kiyama, and O. Oota, Prog. Photovoltaics Res. Appl. 8, 503 (2000).
http://dx.doi.org/10.1002/1099-159X(200009/10)8:5<503::AID-PIP347>3.0.CO;2-G
8.
8.J.-W.A. Schüttauf, K.H.M. van der Werf, I.M. Kielen, W.G.J.H.M. van Sark, J.K. Rath, and R.E.I. Schropp, Appl. Phys. Lett. 98, 153514 (2011).
http://dx.doi.org/10.1063/1.3579540
9.
9.A. Descoeudres, L. Barraud, R. Bartlome, G. Choong, S. De Wolf, F. Zicarelli, and C. Ballif, Appl. Phys. Lett. 97, 183505 (2010).
http://dx.doi.org/10.1063/1.3511737
10.
10.H. Neitzert, W. Hirsch, and M. Kunst, Phys. Rev. B. Condens. Matter 47, 4080 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.4080
11.
11.H. Fujiwara, T. Kaneko, and M. Kondo, Sol. Energy Mater. Sol. Cells 93, 725 (2009).
http://dx.doi.org/10.1016/j.solmat.2008.09.007
12.
12.C. Tsai, G. Anderson, and R. Thompson, J. Non. Cryst. Solids 137-138, 673 (1991).
http://dx.doi.org/10.1016/S0022-3093(05)80210-8
13.
13.A. Fontcuberta i Morral and P. Roca i Cabarrocas, J. Non. Cryst. Solids 299-302, 196 (2002).
http://dx.doi.org/10.1016/S0022-3093(01)01001-8
14.
14.T.F. Schulze, H.N. Beushausen, C. Leendertz, a. Dobrich, B. Rech, and L. Korte, Appl. Phys. Lett. 96, 252102 (2010).
http://dx.doi.org/10.1063/1.3455900
15.
15.A Descoeudres, L. Barraud, S. De Wolf, B. Strahm, D. Lachenal, C. Guérin, Z.C. Holman, F. Zicarelli, B. Demaurex, J. Seif, J. Holovsky, and C. Ballif, Appl. Phys. Lett. 99, 123506 (2011).
http://dx.doi.org/10.1063/1.3641899
16.
16.M. Mews, T.F. Schulze, N. Mingirulli, and L. Korte, Appl. Phys. Lett. 102, 122106 (2013).
http://dx.doi.org/10.1063/1.4798292
17.
17.H. Meddeb, T. Bearda, W. Dimassi, Y. Abdulraheem, H. Ezzaouia, I. Gordon, J. Szlufcik, and J. Poortmans, Phys. Status Solidi – Rapid Res. Lett. 9, 53 (2015).
http://dx.doi.org/10.1002/pssr.201409494
18.
18.J.-W.A. Schüttauf, C.H.M. Van der Werf, W.G.J.H.M. van Sark, J.K. Rath, and R.E.I. Schropp, Thin Solid Films 519, 4476 (2011).
http://dx.doi.org/10.1016/j.tsf.2011.01.319
19.
19.J. Geissbühler, S. De Wolf, B. Demaurex, J.P. Seif, D.T.L. Alexander, L. Barraud, and C. Ballif, Appl. Phys. Lett. 102, 231604 (2013).
http://dx.doi.org/10.1063/1.4811253
20.
20.M. Stuckelberger, M. Despeisse, G. Bugnon, J.W. Schüttauf, F.J. Haug, and C. Ballif, J. Appl. Phys. 114, 154509 (2013).
http://dx.doi.org/10.1063/1.4824813
21.
21.B. Kalache, a. I. Kosarev, R. Vanderhaghen, and P. Roca i Cabarrocas, J. Appl. Phys. 93, 1262 (2003).
http://dx.doi.org/10.1063/1.1524707
22.
22.R.A. Sinton and A. Cuevas, Appl. Phys. Lett. 69, 2510 (1996).
http://dx.doi.org/10.1063/1.117723
23.
23.J. Price, P.Y. Hung, T. Rhoad, B. Foran, and a. C. Diebold, Appl. Phys. Lett. 85, 1701 (2004).
http://dx.doi.org/10.1063/1.1784889
24.
24.V.A. Volodin and D.I. Koshelev, J. Raman Spectrosc. 44, 1760 (2013).
http://dx.doi.org/10.1002/jrs.4408
25.
25.X. Wu, J. Yu, T. Ren, and L. Liu, Microelectronics J. 38, 87 (2007).
http://dx.doi.org/10.1016/j.mejo.2006.09.007
26.
26.J.E. Smith, M.H. Brodsky, B.L. Crowder, M.I. Nathan, and a. Pinczuk, Phys. Rev. Lett. 26, 642 (1971).
http://dx.doi.org/10.1103/PhysRevLett.26.642
27.
27.M. Brodsky, M. Cardona, and J. Cuomo, Phys. Rev. B 16, 3556 (1977).
http://dx.doi.org/10.1103/PhysRevB.16.3556
28.
28.A.H.M. Smets and M.C.M. van de Sanden, Phys. Rev. B - Condens. Matter Mater. Phys. 76, 073202 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.073202
29.
29.R.V. Kruzelecky, D. Racansky, S. Zukotynski, and J.M. Perz, J. Non. Cryst. Solids 99, 89 (1988).
http://dx.doi.org/10.1016/0022-3093(88)90460-7
30.
30.M. Fischer, H. Tan, J. Melskens, R. Vasudevan, M. Zeman, and A.H.M. Smets, Appl. Phys. Lett. 106, 043905 (2015).
http://dx.doi.org/10.1063/1.4907316
31.
31.A.H.M. Smets, M.A. Wank, B. Vet, M. Fischer, R.A.C.M.M. van Swaaij, M. Zeman, D.C. Bobela, C.R. Wronski, and M.C.M. van de Sanden, IEEE J. Photovoltaics 2, 003342 (2012).
http://dx.doi.org/10.1109/JPHOTOV.2011.2180701
32.
32.S. De Wolf and M. Kondo, Appl. Phys. Lett. 90, 042111 (2007).
http://dx.doi.org/10.1063/1.2432297
33.
33.S. De Wolf, C. Ballif, and M. Kondo, Phys. Rev. B 85, 113302 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.113302
34.
34.J. Melskens, A.H.M. Smets, M. Schouten, S.W.H. Eijt, H. Schut, and M. Zeman, IEEE J. Photovoltaics 3, 65 (2013).
http://dx.doi.org/10.1109/JPHOTOV.2012.2226870
35.
35.J.C. Knights and G. Lucovsky, Crit. Rev. Solid State Mater. Sci. 9, 211 (1980).
http://dx.doi.org/10.1080/10408438008243572
36.
36.P. Roca i Cabarrocas, J. Non. Cryst. Solids 164-166, 37 (1993).
http://dx.doi.org/10.1016/0022-3093(93)90486-H
37.
37.F. Wang, X. Zhang, L. Wang, Y. Jiang, C. Wei, S. Xu, and Y. Zhao, Phys. Chem. Chem. Phys. 16, 20202 (2014).
http://dx.doi.org/10.1039/C4CP02212B
38.
38.A. Matsuda and K. Tanaka, J. Appl. Phys. 60, 2351 (1986).
http://dx.doi.org/10.1063/1.337144
39.
39.A. Matsuda, K. Nomoto, Y. Takeuchi, A. Suzuki, A. Yuuki, and J. Perrin, Surf. Sci. 227, 50 (1990).
http://dx.doi.org/10.1016/0039-6028(90)90390-T
40.
40.F. Kaïl, A. Fontcuberta i Morral, A. Hadjadj, P. Roca i Cabarrocas, and A. Beorchia, Philos. Mag. 84, 595 (2004).
http://dx.doi.org/10.1080/14786430310001635440
41.
41.A. Matsuda, M. Takai, T. Nishimoto, and M. Kondo, Sol. Energy Mater. Sol. Cells 78, 3 (2003).
http://dx.doi.org/10.1016/S0927-0248(02)00431-2
42.
42.A.H.M. Smets, W.M.M. Kessels, and M.C.M. van de Sanden, Appl. Phys. Lett. 82, 1547 (2003).
http://dx.doi.org/10.1063/1.1559657
43.
43.K.S. Jones, S. Prussin, and E.R. Weber, Appl. Phys. A Solids Surfaces 45, 1 (1988).
http://dx.doi.org/10.1007/BF00618760
44.
44.U.K. Das, M.Z. Burrows, M. Lu, S. Bowden, and R.W. Birkmire, Appl. Phys. Lett. 92, 063504 (2008).
http://dx.doi.org/10.1063/1.2857465
45.
45.Y. Jiang, X. Zhang, F. Wang, C. Wei, and Y. Zhao, RSC Adv. 4, 29794 (2014).
http://dx.doi.org/10.1039/C4RA03186E
46.
46.C. Tsai and G. Anderson, J. Non. Cryst. Solids 114, 151 (1989).
http://dx.doi.org/10.1016/0022-3093(89)90096-3
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/9/10.1063/1.4931821
Loading
/content/aip/journal/adva/5/9/10.1063/1.4931821
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/9/10.1063/1.4931821
2015-09-22
2016-12-04

Abstract

In this work we demonstrate excellent c-Si surface passivation by depositing a-Si:H in the high-pressure and high hydrogen dilution regime. By using high hydrogen dilution of the precursor gases during deposition the hydrogen content of the layers is sufficiently increased, while the void fraction is reduced, resulting in dense material. Results show a strong dependence of the lifetime on the substrate temperature and a weaker dependence on the hydrogen dilution. After applying a post-deposition annealing step on the samples equilibration of the lifetime occurs independent of the initial nanostructure.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/9/1.4931821.html;jsessionid=jB_VxvIcOVLn4dXw4uw4OoLh.x-aip-live-03?itemId=/content/aip/journal/adva/5/9/10.1063/1.4931821&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/9/10.1063/1.4931821&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/9/10.1063/1.4931821'
Right1,Right2,Right3,