Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.N. M. Caffrey, D. Fritsch, T. Archer, S. Sanvito, and C. Ederer, Phys. Rev. B. 87, 024419 (2013).
2.D. Fritsch and C. Ederer, Phys. Rev. B. 86, 014406 (2012).
3.D. Fritsch and C. Ederer, Phys. Rev. B. 82, 104117 (2010).
4.J. S. Bettinger, C. Piamonteze, R. V. Chopdekar, M. Liberati, E. Arenholz, and Y. Suzuki, Phys. Rev. B. 80, 140413(R) (2009).
5.M. Reehuis, M. Tovar, D. M. Többens, P. Pattison, A. Hoser, and B. Lake, Phys. Rev. B. 91, 024407 (2015).
6.M. Hoppe, S. Döring, M. Gorgoi, S. Cramm, and M. Müller, Phys. Rev. B. 91, 054418 (2015).
7.J. Jacob and M. A. Khadar, J. Appl. Phys. 107, 114310 (2010).
8.E. Pervaiz and I. H. Gul, J. Magn. Magn. Mater. 324, 3695 (2012).
9.S. Singhal and K. Chandra, Journal of Solid State Chemistry. 180, 296 (2007).
10.R. H. Kadam, A. P. Birajdar, S. T. Alone, and S. E. Shirsath, J. Magn. Magn. Mater. 327, 167 (2013).
11.M. Srivastava, S. Layek, J. Singh, A. K. Das, H. C. Verma, A. K. Ojha, N. H. Kim, and J. H. Lee, J. Alloys Compd. 591, 174 (2014).
12.A. M. Wahba and M. B. Mohamed, Ceramics International. 40, 6127 (2014).
13.M. J. Iqbal, Z. Ahmad, T. Meydan, and Y. Melikhov, J. Appl. Phys. 111, 033906 (2012).
14.S. S. More, R. H. Kadam, A. B. Kadam, A. R. Shite, D. R. Mane, and K. M. Jadhav, J. Alloys Compd. 502, 477 (2010).
15.A. K. Ghatage, S. A. Patil, and S. K. Paranjpe, Solid State Commun. 98, 885 (1996).
16.G. D. Tang, Q. J. Han, J. Xu, D. H. Ji, W. H. Qi, Z. Z. Li, Z. F. Shang, and X. Y. Zhang, Physica B. 438, 91 (2014).
17.L. L. Lang, J. Xu, W. H. Qi, Z. Z. Li, G. D. Tang, Z. F. Shang, X. Y. Zhang, L. Q. Wu, and L. C. Xue, J. Appl. Phys. 116, 123901 (2014).
18.Z. F. Shang, W. H. Qi, D. H. Ji, J. Xu, G. D. Tang, X. Y. Zhang, Z. Z. Li, and L. L. Lang, Chin. Phys. B. 23, 107503 (2014).
19.X. Y. Zhang, J. Xu, Z. Z. Li, W. H. Qi, G. D. Tang, Z. F. Shang, D. H. Ji, and L.L. Lang, Physica B. 446, 92 (2014).
20.J. Xu, D. H. Ji, Z. Z. Li, W. H. Qi, G. D. Tang, X. Y. Zhang, Z. F. Shang, and L. L. Lang, Phys. Status Solidi B. 252, 411 (2015).
21.L. L. Lang, J. Xu, Z. Z. Li, W. H. Qi, G. D. Tang, Z. F. Shang, X.Y. Zhang, L. Q. Wu, and L. C. Xue, Physica B. 462, 47 (2015).
22.J. Xu, L. Ma, Z. Z. Li, L. L. Lang, W. H. Qi, G. D. Tang, L. Q. Wu, L. C. Xue, and G. H. Wu. In submiting.
23.G. D. Tang, Z. F. Shang, X. Y. Zhang, J. Xu, Z. Z. Li, C. M. Zhen, W. H. Qi, and L. L. Lang, Physica B. 463, 26 (2015).
24.R. E. Cohen, Nature. 358, 136 (1992).
25.C. W. Chen, Magnetism and Metallurgy of soft magnetic materials (North-Holland Publishing Company), pp. 171417.
26.G. D. Tang, D. L. Hou, W. Chen, X. Zhao, and W. H. Qi, Appl. Phys. Lett. 90, 144101 (2007).
27.G. D. Tang, D. H. Ji, Y. X. Yao, S. P. Liu, Z. Z. Li, W. H. Qi, Q. J. Han, X. Hou, and D. L. Hou, Appl. Phys. Lett. 98, 072511 (2011).
28.D. H. Ji, G. D. Tang, Z. Z. Li, X. Hou, Q. J. Han, W. H. Qi, R. R. Bian, and S. R. Liu, J. Magn. Magn. Mater. 326, 197 (2013).
29.S. R. Liu, D. H. Ji, J. Xu, Z. Z. Li, G. D. Tang, R. R. Bian, W. H. Qi, Z. F. Shang, and X. Y. Zhang, J. Alloys Compd. 581, 616 (2013).
30.H. M. Rietveld, J. Appl. Cryst. 2, 65 (1969).
31.R. D. Shannon, Acta Crystallogr. A 32, 751 (1976).
32.J. C. Phillips, Rev. Mod. Phys. 42, 317 (1970).

Data & Media loading...


Article metrics loading...



Powder samples of the spinel ferrites Ni FeO ( = Cr, Co and 0.0 ≤ ≤ 0.3) and Cr Ni FeO (0.0 ≤ ≤ 0.3) were synthesized using the chemical co-precipitation method. The XRD spectra confirmed that the samples had a single-phase cubic spinel structure. Magnetic measurements showed that the magnetic moments ( ) per formula both at 10 K and 300 K increased with Co substitution, while the values of decreased with Cr substitution. Applying the assumption that the magnetic moments of Cr2+ and Cr3+ lie antiparallel to those of the divalent and trivalent Fe, Co, and Ni cations in the same sublattice of spinel ferrites, these interesting behaviors could be easily interpreted. The cation distributions of the three series of samples were estimated successfully by fitting the dependences of , measured at 10 K, on the doping level , using a quantum-mechanical potential barrier model earlier proposed by our group. The results obtained for the Cr cation distributions at the (A) and [B] sites are very close to those obtained elsewhere using neutron diffraction.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd