Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/9/10.1063/1.4931925
1.
1.G. Pfaff and P. Reynders, “Angle-Dependent Optical Effects Deriving from Submicron Structures of Films and Pigments,” Chem. Rev. (Washington, DC, U. S.) 99, 19631981 (1999).
http://dx.doi.org/10.1021/cr970075u
2.
2.Q. Li, S. Mahendra, D. Y. Lyon, L. Brunet, M. V. Liga, D. Li, and P. J. J. Alvarez, “Antimicrobial nanomaterials for water disinfection and microbial control: Potential applications and implications,” Water Res. 42, 45914602 (2008).
http://dx.doi.org/10.1016/j.watres.2008.08.015
3.
3.R. Dunford, A. Salinaro, L. Cai, N. Serpone, S. Horikoshi, H. Hidaka, and J. Knowland, “Chemical oxidation and DNA damage catalysed by inorganic sunscreen ingredients,” FEBS Lett. 418, 8790 (1997).
http://dx.doi.org/10.1016/S0014-5793(97)01356-2
4.
4.J. Zhao and X. Yang, “Photocatalytic oxidation for indoor air purification: A literature review,” Build. Sci. 38, 645654 (2003).
http://dx.doi.org/10.1016/S0360-1323(02)00212-3
5.
5.K. Fujihara, T. Ohno, and M. Matsumura, “Splitting of water by electrochemical combination of two photocatalytic reactions on TiO2 particles,” J. Chem. Soc., Faraday Trans. 94, 37053709 (1998).
http://dx.doi.org/10.1039/a806398b
6.
6.D. Mitoraj, A. Jańczyk, M. Strus, H. Kisch, G. Stochel, P. B. Heczko, and W. Macyk, “Visible light inactivation of bacteria and fungi by modified titanium dioxide,” Photochem. Photobiol. Sci. 6, 642648 (2007).
http://dx.doi.org/10.1039/b617043a
7.
7.T. G. Deepak, D. Subash, G. S. Anjusree, K. R. N. Pai, S. V. Nair, and A. S. Nair, “Photovoltaic Property of Anatase TiO 2 3 D Meso fl owers,” ACS Sustainable Chem. Eng. 12, 27722780 (2014).
http://dx.doi.org/10.1021/sc500642c
8.
8.A. Popa, C. Ta, T. Gemming, A. Leonhardt, B. Bu, and R. Klingeler, “Anatase Nanotubes as an Electrode Material for Lithium-Ion Batteries,” J. Phys. Chem. C 116, 87148720 (2012).
http://dx.doi.org/10.1021/jp300955r
9.
9.D. Rafieian, R. T. Driessen, W. Ogieglo, and R. G. H. Lammertink, “Intrinsic Photocatalytic Assessment of Reactively Sputtered TiO 2 Films,” ACS Appl. Mater. Interfaces 7, 87278732 (2015).
http://dx.doi.org/10.1021/acsami.5b01047
10.
10.V. P. Gupta and N. M. Ravindra, “Optoelectronic properties of rutile (TiO2),” J. Phys. Chem. Solids 41, 591594 (1980).
http://dx.doi.org/10.1016/0022-3697(80)90009-8
11.
11.L. F. Arias, A. Kleiman, E. Heredia, and a. Márquez, “Rutile titanium dioxide films deposited with a vacuum arc at different temperatures,” J. Phys.: Conf. Ser. 370, 012027 (2012).
http://dx.doi.org/10.1088/1742-6596/370/1/012027
12.
12.L.-D. Piveteau, B. Gasser, and L. Schlapbach, “Evaluating mechanical adhesion of sol–gel titanium dioxide coatings containing calcium phosphate for metal implant application,” Biomaterials 21, 21932201 (2000).
http://dx.doi.org/10.1016/S0142-9612(00)00160-5
13.
13.A. Visan, D. Rafieian, W. Ogieglo, and R. G. H. Lammertink, “Modeling intrinsic kinetics in immobilized photocatalytic microreactors,” Appl. Catal., B 150-151, 93100 (2014).
http://dx.doi.org/10.1016/j.apcatb.2013.12.003
14.
14.T.-S. Yang, C.-B. Shiu, and M.-S. Wong, “Structure and hydrophilicity of titanium oxide films prepared by electron beam evaporation,” Surf. Sci. 548, 7582 (2004).
http://dx.doi.org/10.1016/j.susc.2003.10.044
15.
15.A. Manivannan, N. Spataru, K. Arihara, and A. Fujishima, “Electrochemical Deposition of Titanium Oxide on Boron-Doped Diamond Electrodes,” Electrochem. Solid-State Lett. 8, C138 (2005).
http://dx.doi.org/10.1149/1.2007427
16.
16.L. M. Williams, “Structural properties of titanium dioxide films deposited in an rf glow discharge,” J. Vac. Sci. Technol., A 1, 1810 (1983).
http://dx.doi.org/10.1116/1.572220
17.
17.T. Kubart, J. Jensen, T. Nyberg, L. Liljeholm, D. Depla, and S. Berg, “Influence of the target composition on reactively sputtered titanium oxide films,” Vacuum 83, 12951298 (2009).
http://dx.doi.org/10.1016/j.vacuum.2009.03.026
18.
18.Y. Suda, H. Kawasaki, T. Ueda, and T. Ohshima, “Preparation of high quality nitrogen doped TiO2 thin film as a photocatalyst using a pulsed laser deposition method,” Thin Solid Films 453-454, 162166 (2004).
http://dx.doi.org/10.1016/j.tsf.2003.11.185
19.
19.S. A. O’Neill, I. P. Parkin, R. J. H. Clark, A. Mills, and N. Elliott, “Atmospheric pressure chemical vapour deposition of titanium dioxide coatings on glass,” J. Mater. Chem. 13, 5660 (2003).
http://dx.doi.org/10.1039/b206080a
20.
20.J. Aarik, A. Aidla, H. Mändar, and T. Uustare, “Atomic layer deposition of titanium dioxide from TiCl 4 and H 2 O: investigation of growth mechanism,” Appl. Surf. Sci. 172, 148158 (2001).
http://dx.doi.org/10.1016/S0169-4332(00)00842-4
21.
21.H. Shin, H. S. Jung, K. S. Hong, and J.-K. Lee, “Crystal phase evolution of TiO2 nanoparticles with reaction time in acidic solutions studied via freeze-drying method,” J. Solid State Chem. 178, 1521 (2005).
http://dx.doi.org/10.1016/j.jssc.2004.09.035
22.
22.S. Meyer, R. Gorges, and G. Kreisel, “Preparation and characterisation of titanium dioxide films for catalytic applications generated by anodic spark deposition,” Thin Solid Films 450, 276281 (2004).
http://dx.doi.org/10.1016/j.tsf.2003.11.168
23.
23.C. Rath, P. Mohanty, A. C. Pandey, and N. C. Mishra, “Nanoparticles,” J. Phys. D: Appl. Phys. 42, 205101 (2009).
http://dx.doi.org/10.1088/0022-3727/42/20/205101
24.
24.T. B. Ghosh, “Erratum: On crystalline size dependence of phase stability of nanocrystalline TiO[sub 2] [J. Appl. Phys. 94, 4577 (2003)],” J. Appl. Phys. 95, 408 (2004).
http://dx.doi.org/10.1063/1.1631066
25.
25.M. Hirano, C. Nakahara, K. Ota, O. Tanaike, and M. Inagaki, “Photoactivity and phase stability of ZrO 2 -doped anatase-type TiO 2 directly formed as nanometer-sized particles by hydrolysis under hydrothermal conditions,” J. Solid State Chem. 170, 3947 (2003).
http://dx.doi.org/10.1016/S0022-4596(02)00013-0
26.
26.G. Li, L. Li, J. Boerio-Goates, and B. F. Woodfield, “High purity anatase TiO2 nanocrystals: Near room-temperature synthesis, grain growth kinetics, and surface hydration chemistry,” J. Am. Chem. Soc. 127, 86598666 (2005).
http://dx.doi.org/10.1021/ja050517g
27.
27.D. Yoo, I. Kim, S. Kim, C. H. Hahn, C. Lee, and S. Cho, “Effects of annealing temperature and method on structural and optical properties of TiO2 films prepared by RF magnetron sputtering at room temperature,” Appl. Surf. Sci. 253, 38883892 (2007).
http://dx.doi.org/10.1016/j.apsusc.2006.08.019
28.
28.B. Choudhury and A. Choudhury, “Local structure modification and phase transformation of TiO2 nanoparticles initiated by oxygen defects, grain size, and annealing temperature,” Int. Nano Lett. 3, 55 (2013).
http://dx.doi.org/10.1186/2228-5326-3-55
29.
29.D. Wicaksana, T. Tsujikawa, A. Kobayashi, K. Ono, and A. Kinbara, “Ion bombardment effects on the growth of rutile phase of reactively sputtered tio2 thin films” (1993) pp. 233238, cited By 6.
30.
30.S. S. Pradhan, S. K. Pradhan, V. Bhavanasi, S. Sahoo, S. N. Sarangi, S. Anwar, and P. K. Barhai, “Low temperature stabilized rutile phase TiO 2 films grown by sputtering,” Thin Solid Films 520, 18091813 (2012).
http://dx.doi.org/10.1016/j.tsf.2011.08.106
31.
31.H. A. Shukur, M. Sato, I. Nakamura, and I. Takano, “Characteristics and photocatalytic properties of TiO2 thin film prepared by sputter deposition and post-N+ ion implantation,” Adv. Mater. Sci. Eng. 2012, 7 (2012).
http://dx.doi.org/10.1155/2012/923769
32.
32.T. J. Savenije, A. J. Ferguson, N. Kopidakis, and G. Rumbles, “Revealing the Dynamics of Charge Carriers in Polymer:Fullerene Blends Using Photoinduced Time-Resolved Microwave Conductivity,” J. Phys. Chem. C 117, 2408524103 (2013).
http://dx.doi.org/10.1021/jp406706u
33.
33.D. Depla, S. Heirwegh, S. Mahieu, J. Haemers, and R. De Gryse, “Understanding the discharge voltage behavior during reactive sputtering of oxides,” J. Appl. Phys. 101, 013301 (2007).
http://dx.doi.org/10.1063/1.2404583
34.
34.C. J. Tavares, J. Vieira, L. Rebouta, G. Hungerford, P. Coutinho, V. Teixeira, J. O. Carneiro, and A. J. Fernandes, “Reactive sputtering deposition of photocatalytic TiO2 thin films on glass substrates,” J. Mater. Sci. Eng. B 138, 139143 (2007).
http://dx.doi.org/10.1016/j.mseb.2005.11.043
35.
35.C. Guillén, J. Montero, and J. Herrero, “Anatase andrutile TiO2 thin films prepared by reactive DC sputtering at high deposition rates on glass and flexible polyimide substrates,” J. Mater. Sci. 49, 50355042 (2014).
http://dx.doi.org/10.1007/s10853-014-8209-0
36.
36.R. Pandian, G. Natarajan, S. Rajagopalan, M. Kamruddin, and A. K. Tyagi, “On the phase formation of titanium oxide thin films deposited by reactive DC magnetron sputtering: influence of oxygen partial pressure and nitrogen doping,” Appl. Phys. A: Mater. Sci. Process. 116, 19051913 (2014).
http://dx.doi.org/10.1007/s00339-014-8351-1
37.
37.T. Hanawa, “A comprehensive review of techniques for biofunctionalization of titanium,” J. Periodontal Implant Sci. 41, 263272 (2011).
http://dx.doi.org/10.5051/jpis.2011.41.6.263
38.
38.A. Fujishima, X. Zhang, and D. A. Tryk, “Surface Science Reports TiO 2 photocatalysis and related surface phenomena,” Surf. Sci. Rep. 63, 515582 (2008).
http://dx.doi.org/10.1016/j.surfrep.2008.10.001
39.
39.D. A. H. Hanaor and C. C. Sorrell, “Review of the anatase to rutile phase transformation,” J. Mater. Sci. 46, 855874 (2010).
http://dx.doi.org/10.1007/s10853-010-5113-0
40.
40.T. Jones and T. A. Egerton (John Wiley & Sons, Inc., 2000) Vol. 154, pp. 1637–1638.
http://dx.doi.org/10.1126/science.154.3757.1637
41.
41.A. Beltran, L. Gracia, and J. Andres, “Density functional theory study of the brookite surfaces and phase transitions between natural titania polymorphs,” J. Phys. Chem. B 110, 2341723423 (2006).
http://dx.doi.org/10.1021/jp0643000
42.
42.D. Mardare, M. Tasca, M. Delibas, and G. I. Rusu, “On the structural properties and optical transmittance of TiO2 r.f. sputtered thin films,” Appl. Surf. Sci. 156, 200206 (2000).
http://dx.doi.org/10.1016/S0169-4332(99)00508-5
43.
43.J. E. Kroeze, T. J. Savenije, and J. M. Warman, “Electrodeless determination of the trap density, decay kinetics, and charge separation efficiency of dye-sensitized nanocrystalline TiO_{2},” J. Am. Chem. Soc. 126, 76087618 (2004).
http://dx.doi.org/10.1021/ja039303u
44.
44.T. J. Savenije, A. Huijser, M. J. W. Vermeulen, and R. Katoh, “Charge carrier dynamics in TiO2 nanoparticles at various temperatures,” Chem. Phys. Lett. 461, 9396 (2008).
http://dx.doi.org/10.1016/j.cplett.2008.06.078
45.
45.J. T. Carneiro, T. J. Savenije, and G. Mul, “Experimental evidence for electron localization on Au upon photo-activation of Au/anatase catalysts,” Phys. Chem. Chem. Phys. 11, 27082714 (2009).
http://dx.doi.org/10.1039/b820425j
46.
46.M. C. Fravventura, D. Deligiannis, J. M. Schins, L. D. a. Siebbeles, and T. J. Savenije, “What limits photoconductance in anatase TiO2 nanostructures? A real and imaginary microwave conductance study,” J. Phys. Chem. C 117, 80328040 (2013).
http://dx.doi.org/10.1021/jp400222t
47.
47.T. Luttrell, S. Halpegamage, J. Tao, A. Kramer, E. Sutter, and M. Batzill, “Why is anatase a better photocatalyst than rutile?–Model studies on epitaxial TiO2 films,” Sci. Rep. 4, 4043 (2014).
http://dx.doi.org/10.1038/srep04043
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/9/10.1063/1.4931925
Loading
/content/aip/journal/adva/5/9/10.1063/1.4931925
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/9/10.1063/1.4931925
2015-09-23
2016-09-29

Abstract

We discuss the formation of TiO thin films via DC reactive magnetron sputtering. The oxygen concentration during sputtering proved to be a crucial parameter with respect to the final film structure and properties. The initial deposition provided amorphous films that crystallise upon annealing to anatase or rutile, depending on the initial sputtering conditions. Substoichiometric films (TiO), obtained by sputtering at relatively low oxygen concentration, formed rutile upon annealing in air, whereas stoichiometric films formed anatase. This route therefore presents a formation route for rutile films via lower (<500 °C) temperature pathways. The dynamics of the annealing process were followed by in situ ellipsometry, showing the optical properties transformation. The final crystal structures were identified by XRD. The anatase film obtained by this deposition method displayed high carriers mobility as measured by time-resolved microwave conductance. This also confirms the high photocatalytic activity of the anatase films.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/9/1.4931925.html;jsessionid=wO3dobDJZVKDTBNU3UGtyZPa.x-aip-live-02?itemId=/content/aip/journal/adva/5/9/10.1063/1.4931925&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/9/10.1063/1.4931925&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/9/10.1063/1.4931925'
Right1,Right2,Right3,