Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/9/10.1063/1.4931948
1.
1.T. Takeuchi et al., “Quantum-Confined Stark Effect due to Piezoelectric Fields in GaInN Strained Quantum Wells,” Jpn. J. Appl. Phys. 382, L382, DOI:10.1143/JJAP.36.L382 (1997).
http://dx.doi.org/10.1143/JJAP.36.L382
2.
2.C. Wetzel, T. Takeuchi, H. Amano, and I. Akasaki, “Quantized states in Ga1-xInxN/ GaN heterostructures and the model of polarized homogeneous quantum wells,” Phys. Rev. B 62, R13302-R13305, DOI:10.1103/PhysRevB.62.R13302 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.R13302
3.
3.K. Okamoto et al., “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3, 601–5, DOI:10.1038/nmat1198 (2004).
http://dx.doi.org/10.1038/nmat1198
4.
4.Y. Narukawa, M. Ichikawa, D. Sanga, M. Sano, and T. Mukai, “White light emitting diodes with super-high luminous efficacy,” J. Phys. D: Appl. Phys. 43, 354002, DOI:10.1088/0022-3727/43/35/354002 (2010).
http://dx.doi.org/10.1088/0022-3727/43/35/354002
5.
5.E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
http://dx.doi.org/10.1103/PhysRev.69.37
6.
6.E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 58, 2059-2062 (1987).
http://dx.doi.org/10.1103/PhysRevLett.58.2059
7.
7.S. Kühn, U. Hakanson, L. Rogobete, and V. Sandoghdar, “Enhancement of Single-Molecule Fluorescence Using a Gold Nanoparticle as an Optical Nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.017402
8.
8.D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum Optics with Surface Plasmons,” Phys. Rev. Lett. 97, 053002, DOI:10.1103/PhysRevLett.97.053002 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.053002
9.
9.H. Mertens, A. F. Koenderink, and A. Polman, “Plasmon-enhanced luminescence near noble-metal nanospheres: Comparison of exact theory and an improved Gersten and Nitzan model,” Phys. Rev. B 76, 115123, DOI:10.1103/PhysRevB.76.115123 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.115123
10.
10.A. V. Akimov et al., “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402-406, DOI:10.1038/nature06230 (2007).
http://dx.doi.org/10.1038/nature06230
11.
11.T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi–Uda antenna,” Nature Photonics 4, 312-315, DOI:10.1038/nphoton.2010.34 (2010).
http://dx.doi.org/10.1038/nphoton.2010.34
12.
12.Y. Chen, N. Gregersen, T. R. Nielsen, J. Mørk, and P. Lodahl, “Spontaneous decay of a single quantum dot coupled to a metallic slot waveguide in the presence of leaky plasmonic modes,” Opt. Express 18, 12489-12498, DOI:10.1364/OE.18.012489 (2010).
http://dx.doi.org/10.1364/OE.18.012489
13.
13.Y. Chen, T. R. Nielsen, N. Gregersen, P. Lodahl, and J. Mørk, “Finite-element modeling of spontaneous emission of a quantum emitter at nanoscale proximity to plasmonic waveguide,” Phys. Rev. B 81, 125431, DOI:10.1103/PhysRevB.81.125431 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.125431
14.
14.Y. Nishijima, L. Rosa, and S. Juodkazis, “Surface plasmon resonances in periodic and random patterns of gold nano-disks for broadband light harvesting,” Opt. Express 20, 11466-11477, DOI:10.1364/OE.20.011466 (2012).
http://dx.doi.org/10.1364/OE.20.011466
15.
15.J. Vučković, M. Lončar, and A. Scherer, “Surface plasmon enhanced light-emitting diode,” IEEE Journal of Quantum Electronics 36, 1131-1144, DOI:10.1109/3.880653 (2000).
http://dx.doi.org/10.1109/3.880653
16.
16.D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Localized surface plasmon-induced emission enhancement of a green light-emitting diode,” Nanotechnology 19, 345201, DOI:10.1088/0957-4484/19/34/345201 (2008).
http://dx.doi.org/10.1088/0957-4484/19/34/345201
17.
17.C. Y. Cho et al., “Surface plasmon-enhanced light-emitting diodes using silver nanoparticles embedded in p-GaN,” Nanotechnology 21, 205201, DOI:10.1088/0957-4484/21/20/205201 (2010).
http://dx.doi.org/10.1088/0957-4484/21/20/205201
18.
18.C. C. Kao, Y. K. Su, C. L. Lin, and J. J. Chen, “Localized Surface Plasmon-Enhanced Nitride-Based Light-Emitting Diode With Ag Nanotriangle Array by Nanosphere Lithography,” IEEE Photonics Technology Letters 22, 984-986, DOI:10.1109/LPT.2010.2049013 (2010).
http://dx.doi.org/10.1109/LPT.2010.2049013
19.
19.J. H. Sung et al., “Enhancement of electroluminescence in GaN-based light-emitting diodes by metallic nanoparticles,” Appl. Phys. Lett. 96, 261105, DOI:10.1063/1.3457349 (2010).
http://dx.doi.org/10.1063/1.3457349
20.
20.J. Henson, J. DiMaria, E. Dimakis, T. D. Moustakas, and R. Paiella, “Plasmon-enhanced light emission based on lattice resonances of silver nanocylinder arrays,” Opt. Lett. 37, 79-81, DOI:10.1364/OL.37.000079 (2012).
http://dx.doi.org/10.1364/OL.37.000079
21.
21.G. Grzela et al., “Nanowire antenna emission,” Nano Lett. 12, 54815486, DOI:10.1021/nl301907f (2012).
http://dx.doi.org/10.1021/nl301907f
22.
22.S. R. K. Rodriguez, S. Murai, M. A. Verschuuren, and J. Gómez Rivas, “Light-Emitting Waveguide-Plasmon Polaritons,” Phys. Rev. Lett. 109, 166803, DOI:10.1103/PhysRevLett.109.16680 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.166803
23.
23.H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, “Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer,” Appl. Phys. Lett. 48, 353, DOI:10.1063/1.96549 (1986).
http://dx.doi.org/10.1063/1.96549
24.
24.J. Henson et al., “Plasmon enhanced light emission from InGaN quantum wells via coupling to chemically synthesized silver nanoparticles,” Appl. Phys. Lett 95, 151109, DOI:10.1063/1.3249579 (2009).
http://dx.doi.org/10.1063/1.3249579
25.
25.C.-W. Huang et al., “Fabrication of surface metal nanoparticles and their induced surface plasmon coupling with subsurface InGaN/GaN quantum wells,” Nanotechnology 22, 475201, DOI:10.1088/0957-4484/22/47/475201 (2011).
http://dx.doi.org/10.1088/0957-4484/22/47/475201
26.
26.S. Watanabe et al., “Internal quantum efficiency of highly-efficient InxGa1−xN based near ultraviolet light emitting diodes,” Appl. Phys. Lett. 83, 4906-4908, DOI:10.1063/1.1633672 (2003).
http://dx.doi.org/10.1063/1.1633672
27.
27.K. Okamoto et al., “Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 87, 071102, DOI:10.1063/1.2010602 (2005).
http://dx.doi.org/10.1063/1.2010602
28.
28.Y. Lee et al., “Study of the Excitation Power Dependent Internal Quantum Efficiency in InGaN / GaN LEDs Grown on Patterned Sapphire Substrate,” IEEE J. Sel. Top. Quantum Electron. 15, 1137-1143, DOI:10.1109/JSTQE.2009.2014967 (2009).
http://dx.doi.org/10.1109/JSTQE.2008.2010263
29.
29.G. Sun, J. B. Khurgin, and R. Soref, “Plasmonic light-emission enhancement with isolated metal nanoparticles and their coupled arrays,” J. Opt. Soc. Am. B 25, 1748-1755, DOI:10.1364/JOSAB.25.001748 (2008).
http://dx.doi.org/10.1364/JOSAB.25.001748
30.
30.A. Fadil et al., “Surface plasmon coupling dynamics in InGaN/GaN quantum-well structures and radiative efficiency improvement,” Sci. Rep. 4, 17, DOI:10.1038/srep06392 (2014).
http://dx.doi.org/10.1038/srep06392
31.
31.F. D. Sala, “Free-carrier screening of polarization fields in wurtzite GaN/InGaN laser structures,” Appl. Phys. Lett. 74, 2002-2004; DOI:10.1063/1.123727 (1999).
http://dx.doi.org/10.1063/1.123727
32.
32.T. Kuroda and A. Tackeuchi, “Influence of free carrier screening on the luminescence energy shift and carrier lifetime of InGaN quantum wells,” J. Appl. Phys. 92, 3071-3074, DOI:10.1063/1.1502186 (2002).
http://dx.doi.org/10.1063/1.1502186
33.
33.S. Jiang et al., “Resonant absorption and scattering suppression of localized surface plasmons in Ag particles on green LED,” Opt. Express 21, 1210012110, DOI:10.1364/OE.21.012100 (2013).
http://dx.doi.org/10.1364/OE.21.012100
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/9/10.1063/1.4931948
Loading
/content/aip/journal/adva/5/9/10.1063/1.4931948
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/9/10.1063/1.4931948
2015-09-24
2016-09-29

Abstract

We report internal quantum efficiency enhancement of thin p-GaN green quantum-well structure using self-assembled Ag nanoparticles. Temperature dependent photoluminescence measurements are conducted to determine the internal quantum efficiency. The impact of excitation power density on the enhancement factor is investigated. We obtain an internal quantum efficiency enhancement by a factor of 2.3 at 756 W/cm2, and a factor of 8.1 at 1 W/cm2. A Purcell enhancement up to a factor of 26 is estimated by fitting the experimental results to a theoretical model for the efficiency enhancement factor.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/9/1.4931948.html;jsessionid=vOWoDPx2faFY-sckhJK_6N3f.x-aip-live-02?itemId=/content/aip/journal/adva/5/9/10.1063/1.4931948&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/9/10.1063/1.4931948&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/9/10.1063/1.4931948'
Right1,Right2,Right3,