Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/9/10.1063/1.4931951
1.
1.F. J. DiSalvo, Science 285, 703 (1999).
http://dx.doi.org/10.1126/science.285.5428.703
2.
2.B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen, and Z. Ren, Science 320, 634 (2008).
http://dx.doi.org/10.1126/science.1156446
3.
3.G. J. Snyder and E. S. Toberer, Nat. Mater. 7, 105 (2008).
http://dx.doi.org/10.1038/nmat2090
4.
4.S. E. Jo, M. S. Kim, M. K. Kim, H. L. Kim, and Y. J. Kim, Electron. Lett. 48, 1015 (2012).
http://dx.doi.org/10.1049/el.2012.1566
5.
5.P. Woias, F. Schule, E. Bäumke, P. Mehne, and M. Kroener, 2014 J. Phys. Conf. Ser. 557, 012084 (2014).
6.
6.R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, Nature 413, 597 (2001).
http://dx.doi.org/10.1038/35098012
7.
7.H. Ohta, W. S. Seo, and K. J. Kumoto, J. Am. Ceram. Soc. 79, 2193 (1996).
http://dx.doi.org/10.1111/j.1151-2916.1996.tb08958.x
8.
8.K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature 432, 488 (2004).
http://dx.doi.org/10.1038/nature03090
9.
9.M. Kimura, T Nakanishi, and K Nomura, Appl. Phys. Lett. 92, 133512 (2008).
http://dx.doi.org/10.1063/1.2904704
10.
10.M. K Kim, H. J. Jeong, H. J. Lee, T. K. Ahn, H. S. Shin, J. S. Park, J. K. Jeong, Y. G. Mo, and H. D. Kim, Appl. Phys. Lett. 90, 212114 (2007).
http://dx.doi.org/10.1063/1.2742790
11.
11.H. H. Hsu, C. Y. Chang, and C. H. Cheng, Phys. Status Solidi RRL 7, 285 (2013).
http://dx.doi.org/10.1002/pssr.201307047
12.
12.T. Y. Hsieh, T. C. Chang, T. C. Chen, Y. C. Chen, Y. T. Chen, P. Y. Liao, A. K. Chu, W. W. Tsai, W. J. Chiang, and J. Y. Yan, Appl. Phys. Lett. 101, 212104 (2012).
http://dx.doi.org/10.1063/1.4767912
13.
13.T. Kamiya, K. Nomura, and H. Hosono, Appl. Phys. Lett. 96, 122103 (2010).
http://dx.doi.org/10.1063/1.3364131
14.
14.M. Kimura, T. Kamiya, T. Nakanishi, K. Nomura, and H. Hosono, Appl. Phys. Lett. 96, 262105 (2010).
http://dx.doi.org/10.1063/1.3455072
15.
15.N. Lu, L. Li, P. Sun, W. Banerjee, and M. Liu, Appl. Phys. Lett. 116, 104502 (2014).
16.
16.D. K. Seo, S. Shin, H. H. Cho, B. H. Kong, D. M. Whang, and H. K. Cho, Acta Materialia 59, 6743 (2011).
http://dx.doi.org/10.1016/j.actamat.2011.07.032
17.
17.I. Terasaki, Y. Sasago, and K. Uchinokura, Phys. Rev. B 56, 685 (1997).
http://dx.doi.org/10.1103/PhysRevB.56.R12685
18.
18.H. Ohta, A. Mizutani, K. Sugiura, M. Hirano, H. Hosono, and K. Koumoto, Adv. Mater. 18, 1649 (2006).
http://dx.doi.org/10.1002/adma.200502606
19.
19.K. H. Lee, Y. Mune, H. Ohta, and K. Koumoto, Appl. Phys. Exp. 1, 015007 (2008).
http://dx.doi.org/10.1143/APEX.1.015007
20.
20.S. Ohta, T. Nomura, H. Ohta, and K. Koumoto, J. Appl. Phys. 97, 034106 (2005).
http://dx.doi.org/10.1063/1.1847723
21.
21.S. Ohta, T. Nomura, H. Ohta, M. Hirano, H. Hosono, and K. Koumoto, Appl. Phys. Lett. 87, 092108 (2005).
http://dx.doi.org/10.1063/1.2035889
22.
22.Y. Mune, H. Ohta, K. Koumoto, T. Mizoguchi, and Y. Ikuhara, Appl. Phys. Lett. 91, 192105 (2007).
http://dx.doi.org/10.1063/1.2809364
23.
23.D. K. Seo, B. H. Kong, H. K. Cho, B. H. Kong, D. M. Whang, and H. K. Cho, Cryst. Growth Des. 10, 4639 (2010).
http://dx.doi.org/10.1021/cg100924a
24.
24.Y. Ueoka, Y. Ishikawa, N. Maejima, F. Matsui, H. Matsui, H. Yamazaki, S. Urakawa, M. Horita, H. Daimon, and Y. Uraoka, J. Apple. Phys. 114, 163713 (2013).
http://dx.doi.org/10.1063/1.4828869
25.
25.T. Kamlya, K. Nomura, and H. Hosono, Journal of Display Technology 5, 462 (2009).
http://dx.doi.org/10.1109/JDT.2009.2022064
26.
26.W. C. Germs, W. H. Adriaans, A. K. Tripathi, W. S. C. Roelofs, B. Cobb, R. A. J. Janssen, G. H. Gelinck, and M. Kemerink, Phys. Rev. B 86, 155319 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.155319
27.
27.D. Adler, L. P. Flora, and S. D. Senturia, Solid State Commun. 12, 9 (1973).
http://dx.doi.org/10.1016/0038-1098(73)90333-5
28.
28.A. Takagi, K. Nomura, H. Oht, H. Yanagi, T. Kamiya, H. Yanagia, T. Kamiya, M. Hirano, and H. Hosono, Thin Solid Films 486, 38 (2005).
http://dx.doi.org/10.1016/j.tsf.2004.11.223
29.
29.K. Nomura, T. Kamiya, H. Ohta, T. Uruga, M. Hirano, and H. Hosono, Phys. Rev. B 75, 035212 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.035212
30.
30.N.F. Mott and E. A. Davis, Electronic Processes in Non-Crystalline Materials, 2nd ed. (Clarendon-Press, Oxford, 1971), p. 473.
31.
31.G. H. Jonker, Phillips Res. Rep. 23, 131 (1968).
32.
32.T. Iwasaki, N. Itagaki, T. Den, H. Kumomi, K. Nomura, T. Kamiya, and H. Hosono, Appl. Phys. Lett. 90, 242114 (2007).
http://dx.doi.org/10.1063/1.2749177
33.
33.K. Nomura, A. Takagi, T. Kamiya, H. Ohta, M. Hirano, and H. Hosono, Jpn. J. Appl. Phys. 45, 4303 (2006).
http://dx.doi.org/10.1143/JJAP.45.4303
34.
34.L. D. Hicks and M. S. Dresselhaus, Phys. Rev. B 47, 16631 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.16631
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/9/10.1063/1.4931951
Loading
/content/aip/journal/adva/5/9/10.1063/1.4931951
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/9/10.1063/1.4931951
2015-09-24
2016-12-10

Abstract

We have investigated the thermoelectric properties of amorphous InGaZnO (a-IGZO) thin films optimized by adjusting the carrier concentration. The a-IGZO films were produced under various oxygen flow ratios. The Seebeck coefficient and the electrical conductivity were measured from 100 to 400 K. We found that the power factor (PF) at 300 K had a maximum value of 82 × 10−6 W/mK2, where the carrier density was 7.7 × 1019 cm−3. Moreover, the obtained data was analyzed by fitting the percolation model. Theoretical analysis revealed that the Fermi level was located approximately above the potential barrier when the PF became maximal. The thermoelectric properties were controlled by the relationship between the position of Fermi level and the height of potential energy barriers.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/9/1.4931951.html;jsessionid=BmP75wAU-TZ5edffK2KSBhZb.x-aip-live-02?itemId=/content/aip/journal/adva/5/9/10.1063/1.4931951&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/9/10.1063/1.4931951&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/9/10.1063/1.4931951'
Right1,Right2,Right3,