Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/9/10.1063/1.4931956
1.
1.P.J. Hall, M. Mirzaeian, S.I. Fletcher, F.B. Sillars, A.J.R. Rennie, G.O. Shitta-Bey, G. Wilson, A. Cruden, and R. Carter, Energy Environ. Sci. 3, 1238 (2010).
http://dx.doi.org/10.1039/c0ee00004c
2.
2.P. Simon, Y. Gogotsi, and B. Dunn, Science 343, 1210 (2014).
http://dx.doi.org/10.1126/science.1249625
3.
3.M. Inagaki, H. Konno, and O. Tanaike, J. Power Sources 195, 7880 (2010).
http://dx.doi.org/10.1016/j.jpowsour.2010.06.036
4.
4.M.D. Stoller and R.S. Ruoff, Energy Environ. Sci. 3, 1294 (2010).
http://dx.doi.org/10.1039/c0ee00074d
5.
5.L. Zhang, F. Zhang, X. Yang, G. Long, Y. Wu, T. Zhang, K. Leng, Y. Huang, Y. Ma, A. Yu, and C. Yongsheng, Sci. Rep. 3 (2013).
6.
6.W.G. Pell and B.E. Conway, J. Power Sources 136, 334 (2004).
http://dx.doi.org/10.1016/j.jpowsour.2004.03.021
7.
7.P. Hapiot and C. Lagrost, Chem. Rev. 108, 2238 (2008).
http://dx.doi.org/10.1021/cr0680686
8.
8.G.P. Pandey and A.C. Rastogi, J. Electrochem. Soc. 159, A1664 (2012).
http://dx.doi.org/10.1149/2.047210jes
9.
9.H. Yu, J. Wu, L. Fan, K. Xu, X. Zhong, Y. Lin, and J. Lin, Electrochim. Acta 56, 6881 (2011).
http://dx.doi.org/10.1016/j.electacta.2011.06.039
10.
10.C. Ramasamy, J. Palma del vel, and M. Anderson, J. Solid State Electrochem. 18, 2217 (2014).
http://dx.doi.org/10.1007/s10008-014-2466-3
11.
11.P. Sivaraman, A. Thakur, R.K. Kushwaha, D. Ratna, and A.B. Samui, Electrochem. Solid-State Lett. 9, A435 (2006).
http://dx.doi.org/10.1149/1.2213357
12.
12.P. Yang, W. Cui, L. Li, L. Liu, and M. An, Solid State Sci. 14, 598 (2012).
http://dx.doi.org/10.1016/j.solidstatesciences.2012.02.005
13.
13.M. Armand, F. Endres, D.R. MacFarlane, H. Ohno, and B. Scrosati, Nat. Mater. 8, 621 (2009).
http://dx.doi.org/10.1038/nmat2448
14.
14.P. Simon and Y. Gogotsi, Nat. Mater. 7, 845 (2008).
http://dx.doi.org/10.1038/nmat2297
15.
15.C.-C. Yang, S.-T. Hsu, and W.-C. Chien, J. Power Sources 152, 303 (2005).
http://dx.doi.org/10.1016/j.jpowsour.2005.03.004
16.
16.C. Meng, C. Liu, L. Chen, C. Hu, and S. Fan, Nano Lett. 10, 4025 (2010).
http://dx.doi.org/10.1021/nl1019672
17.
17.S.A. Hashmi, R.J. Latham, R.G. Linford, and W.S. Schlindwein, Polym. Int. 47, 28 (1998).
http://dx.doi.org/10.1002/(SICI)1097-0126(199809)47:1<28::AID-PI3>3.0.CO;2-C
18.
18.G. Ma, E. Feng, K. Sun, H. Peng, J. Li, and Z. Lei, Electrochim. Acta 135, 461 (2014).
http://dx.doi.org/10.1016/j.electacta.2014.05.045
19.
19.G. Ma, J. Li, K. Sun, H. Peng, J. Mu, and Z. Lei, J. Power Sources 256, 281 (2014).
http://dx.doi.org/10.1016/j.jpowsour.2014.01.062
20.
20.H. Gao, F. Xiao, C.B. Ching, and H. Duan, ACS Appl. Mater. Interfaces 4, 7020 (2012).
http://dx.doi.org/10.1021/am302280b
21.
21.A. Bello, K. Makgopa, M. Fabiane, D. Dodoo-Ahrin, K.I. Ozoemena, and N. Manyala, J. Mater. Sci. (2013).
22.
22.A. Bello, O.O. Fashedemi, J.N. Lekitima, M. Fabiane, D. Dodoo-Arhin, K.I. Ozoemena, Y. Gogotsi, A.T. Charlie Johnson, and N. Manyala, AIP Adv. 3, 82118 (2013).
http://dx.doi.org/10.1063/1.4819270
23.
23.L. Demarconnay, E. Raymundo-Pinero, and F. Béguin, Electrochem. Commun. 12, 1275 (2010).
http://dx.doi.org/10.1016/j.elecom.2010.06.036
24.
24.J. Luo, H.D. Jang, and J. Huang, ACS Nano 7, 1464 (2013).
http://dx.doi.org/10.1021/nn3052378
25.
25.See supplementary material at http://dx.doi.org/10.1063/1.4931956 for comparison of galvanostatic charge/discharge at 0.5 A g-1 AC and CB electrode materials in PKC and PK gel electrolytes respectively and AC and PANI electrode materials in PKP and PK gel electrolytes respectively.[Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/9/10.1063/1.4931956
Loading
/content/aip/journal/adva/5/9/10.1063/1.4931956
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/9/10.1063/1.4931956
2015-09-24
2016-12-05

Abstract

This article is focused on polymer based gel electrolyte due to the fact that polymers are cheap and can be used to achieve extended potential window for improved energy density of the supercapacitor devices when compared to aqueous electrolytes. Electrochemical characterization of a symmetric supercapacitor devices based on activated carbon in different polyvinyl alcohol (PVA) based gel electrolytes was carried out. The device exhibited a maximum energy density of 24 Wh kg−1 when carbon black was added to the gel electrolyte as conductive additive. The good energy density was correlated with the improved conductivity of the electrolyte medium which is favorable for fast ion transport in this relatively viscous environment. Most importantly, the device remained stable with no capacitance lost after 10,000 cycles.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/9/1.4931956.html;jsessionid=53ibH5feL4P8EpXZzjg93dz4.x-aip-live-02?itemId=/content/aip/journal/adva/5/9/10.1063/1.4931956&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/9/10.1063/1.4931956&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/9/10.1063/1.4931956'
Right1,Right2,Right3,