Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/9/10.1063/1.4931996
1.
1.Ronald E. cohen, Nature 358, 136 (1992).
http://dx.doi.org/10.1038/358136a0
2.
2.J. C. Phillips, Rev. Mod. Phys. 42, 317 (1970).
http://dx.doi.org/10.1103/RevModPhys.42.317
3.
3.J. Thomas and I. Pollini, Phys. Rev. B 32, 2522 (1985).
http://dx.doi.org/10.1103/PhysRevB.32.2522
4.
4.J. R. Chelikowsky and J. K. Burdett, Phys. Rev. Lett. 56, 961 (1986).
http://dx.doi.org/10.1103/PhysRevLett.56.961
5.
5.A. García and M. L. Cohen, Phys. Rev. B 47, 4215 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.4215
6.
6.B. Balamurugan, B. R. Mehta, and S. M. Shivaprasad, Appl. Phys. Lett. 79, 3176 (2001).
http://dx.doi.org/10.1063/1.1416478
7.
7.G.E. Arif, Y.A. Douri, F.A. Abdullah, and R. Khenata, Superlattices and Microstructures 53, 24 (2013).
http://dx.doi.org/10.1016/j.spmi.2012.09.006
8.
8.P. Ascarelli and G. Moretti, Surface and Interface Analysis 7, 8 (1985).
http://dx.doi.org/10.1002/sia.740070103
9.
9.Jean-Charles Dupin, Danielle Gonbeau, Philippe Vinatier, and Alain Levasseur, Phys. Chem. Chem. Phys. 2, 1319 (2000).
http://dx.doi.org/10.1039/a908800h
10.
10.M. P. Seah and M. T. Brown, Journal of Electron Spectroscopy and Related Phenomena 95, 71 (1998).
http://dx.doi.org/10.1016/S0368-2048(98)00204-7
11.
11.D. H. Ji, G. D. Tang, Z. Z. Li, X. Hou, Q. J. Han, W. H. Qi, R. R. Bian, and S. R. Liu, J. Magn. Magn. Mater. 326, 197 (2013).
http://dx.doi.org/10.1016/j.jmmm.2012.09.016
12.
12.L. L. Lang, J. Xu, W. H. Qi, Z. Z. Li, G. D. Tang, Z. F. Shang, X. Y. Zhang, L. Q. Wu, and L. C. Xue, J. Appl. Phys. 116, 123901 (2014).
http://dx.doi.org/10.1063/1.4896187
13.
13.G. D. Tang, Q. J. Han, J. Xu, D. H. Ji, W. H. Qi, Z. Z. Li, Z. F. Shang, and X. Y. Zhang, Physica B. 438, 91 (2014).
http://dx.doi.org/10.1016/j.physb.2014.01.010
14.
14.Z. F. Shang, W. H. Qi, D. H. Ji, J. Xu, G. D. Tang, X. Y. Zhang, Z. Z. Li, and L. L. Lang, Chin. Phys. B. 23, 107503 (2014).
http://dx.doi.org/10.1088/1674-1056/23/10/107503
15.
15.X. Y. Zhang, J. Xu, Z. Z. Li, W. H. Qi, G. D. Tang, Z. F. Shang, D. H. Ji, and L.L. Lang, Physica B. 446, 92 (2014).
http://dx.doi.org/10.1016/j.physb.2014.04.045
16.
16.J. Xu, D. H. Ji, Z. Z. Li, W. H. Qi, G. D. Tang, X. Y. Zhang, Z. F. Shang, and L. L. Lang, Phys. Status Solidi B. 252, 411 (2015).
http://dx.doi.org/10.1002/pssb.201451216
17.
17.L. L. Lang, J. Xu, Z. Z. Li, W. H. Qi, G. D. Tang, Z. F. Shang, X.Y. Zhang, L. Q. Wu, and L. C. Xue, Physica B. 462, 47 (2015).
http://dx.doi.org/10.1016/j.physb.2015.01.008
18.
18.G. D. Tang, Z. F. Shang, X. Y. Zhang, J. Xu, Z. Z. Li, C. M. Zhen, W. H. Qi, and L. L. Lang, Physica B. 463, 26 (2015).
http://dx.doi.org/10.1016/j.physb.2015.01.035
19.
19.J. Xu, L. Ma, Z. Z. Li, L.L. Lang, W. H. Qi, G. D. Tang, L.Q. Wu, L.C. Xue, and G.H. Wu, Phys. Status Solidi B. (2015), published online (Aug, 2015), DOI 10.1002/pssb.201552260.
http://dx.doi.org/10.1002/pssb.201552260
20.
20.K. Suzuki, B. Barbiellini, Y. Orikasa, N. Go, H. Sakurai, S. Kaprzyk, M. Itou, K. Yamamoto, Y. Uchimoto, Yung Jui Wang, H. Hafiz, A. Bansil, and Y. Sakurai, Phys. Rev. Lett. 114, 087401 (2015).
http://dx.doi.org/10.1103/PhysRevLett.114.087401
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/9/10.1063/1.4931996
Loading
/content/aip/journal/adva/5/9/10.1063/1.4931996
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/9/10.1063/1.4931996
2015-09-24
2016-12-06

Abstract

The average valence, , of the oxygen anions in the perovskite oxide BaTiO, was found using O1s photoelectron spectra to be −1.55. This experimental result is close to the theoretical value for BaTiO (−1.63) calculated by Cohen [Nature , 136 (1992)] using density functional theory. Using the same approach, we obtained values of for several monoxides, and investigated the dependence of and the ionicity on the second ionization energy, ( 2+), of the metal cation. We found that the dependence of the ionicity on ( 2+) in this work is close to that reported by Phillips [Rev. Mod. Phys. , 317 (1970)]. We therefore suggest that O1s photoelectron spectrum measurements should be accepted as a general experimental method for estimating the ionicity and average valence of oxygen anions.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/9/1.4931996.html;jsessionid=X0xzJwqIXVIKYCTiHTX07oNY.x-aip-live-03?itemId=/content/aip/journal/adva/5/9/10.1063/1.4931996&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/9/10.1063/1.4931996&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/9/10.1063/1.4931996'
Right1,Right2,Right3,