Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/9/10.1063/1.4932037
1.
1.D. Mariotti and R. M. Sankaran, J Phys D 43, 323001 (2010).
http://dx.doi.org/10.1088/0022-3727/43/32/323001
2.
2.D. Mariotti and R. M. Sankaran, J Phys D 44, 174023 (2011).
http://dx.doi.org/10.1088/0022-3727/44/17/174023
3.
3.K. Tachibana, IEEJ T ELECTR ELECTR 1, 145 (2006).
http://dx.doi.org/10.1002/tee.20031
4.
4.K. Becker, K. Schoenbach, and J. Eden, J Phys D 39, R55 (2006).
http://dx.doi.org/10.1088/0022-3727/39/3/R01
5.
5.M. Laroussi and X. Lu, Appl Phys Lett 87, 113902 (2005).
http://dx.doi.org/10.1063/1.2045549
6.
6.M. Laroussi, M. Kong, and G. Morfill, Plasma Medicine: Applications of Low-Temperature Gas Plasmas in Medicine and Biology (Cambridge University Press, New York, 2012).
7.
7.Ü Özgür, Y. I. Alivov, C. Liu, A. Teke, M. Reshchikov, S. Doğan, V. Avrutin, S. Cho, and H. Morkoc, J Appl Phys 98, 041301 (2005).
http://dx.doi.org/10.1063/1.1992666
8.
8.L. Zhang, Y. Jiang, Y. Ding, M. Povey, and D. York, J Nanopart Res 9, 479 (2007).
http://dx.doi.org/10.1007/s11051-006-9150-1
9.
9.J. Zhou, N. S. Xu, and Z. L. Wang, Adv Mater 18, 2432 (2006).
http://dx.doi.org/10.1002/adma.200600200
10.
10.C. Jagadish and S. J. Pearton, Zinc Oxide Bulk, Thin Films and Nanostructures: Processing, Properties, and Applications (Elsevier, 2011).
11.
11.M. Laroussi, PLASMA PROCESS POLYM 2, 391 (2005).
http://dx.doi.org/10.1002/ppap.200400078
12.
12.E. Stoffels, Y. Sakiyama, and D. B. Graves, IEEE Trans Plasma Sci 36, 1441 (2008).
http://dx.doi.org/10.1109/TPS.2008.2001084
13.
13.C. Jiang, M. Chen, C. Schaudinn, A. Gorur, P. T. Vernier, J. W. Costerton, D. E. Jaramillo, P. P. Sedghizadeh, and M. A. Gundersen, IEEE Trans Plasma Sci 37, 1190 (2009).
http://dx.doi.org/10.1109/TPS.2009.2014870
14.
14.J. Pan, P. Sun, Y. Tian, H. Zhou, H. Wu, N. Bai, F. Liu, W. Zhu, J. Zhang, and K. H. Becker, IEEE Trans Plasma Sci 38, 3143 (2010).
http://dx.doi.org/10.1109/TPS.2010.2066291
15.
15.J. Eden, S. Park, C. Herring, and J. Bulson, J Phys D 44, 224011 (2011).
http://dx.doi.org/10.1088/0022-3727/44/22/224011
16.
16.C. Herring and J. Bulson, Eden Park Illumination (2012).
17.
17.K. Saji, N. Joshy, and M. Jayaraj, J Appl Phys 100, 043302 (2006).
http://dx.doi.org/10.1063/1.2266260
18.
18.F. Claeyssens, A. Cheesman, S. J. Henley, and M. N. Ashfold, J Appl Phys 92, 6886 (2002).
http://dx.doi.org/10.1063/1.1518782
19.
19.M. Hanif, M. Salik, and M. Baig, Plasma Chem Plasma Process 33, 1167 (2013).
http://dx.doi.org/10.1007/s11090-013-9478-0
20.
20.V. Craciun, J. Elders, J. Gardeniers, and I. W. Boyd, Appl Phys Lett 65, 2963 (1994).
http://dx.doi.org/10.1063/1.112478
21.
21.L. Lucera, L. Adnane, K. Cil, V. Manthina, A. Agrios, H. Silva, and A. Gokirmak, APS Meeting Abstracts (2012), p. 28014.
22.
22.N. Noor, L. Lucera, T. Capuano, V. Manthina, A. G. Agrios, H. Silva, and A. Gokirmak, (Submitted).
23.
23.P. Hari, M. Baumer, W. Tennyson, and L. Bumm, J Non Cryst Solids 354, 2843 (2008).
http://dx.doi.org/10.1016/j.jnoncrysol.2007.09.097
24.
24.M. Wang, E. J. Kim, S. H. Hahn, C. Park, and K. Koo, Cryst Growth Des 8, 501 (2008).
http://dx.doi.org/10.1021/cg070467m
25.
25.V. Manthina, T. Patel, and A. G. Agrios, J Am Ceram Soc 97, 1028 (2014).
http://dx.doi.org/10.1111/jace.12819
26.
26.I. I. Sobelman, Atomic Spectra and Radiative Transitions (Springer-Verlag, Berlin, 1979).
27.
27.M. Willander, O. Nur, J. R. Sadaf, M. I. Qadir, S. Zaman, A. Zainelabdin, N. Bano, and I. Hussain, Materials 3, 2643 (2010).
http://dx.doi.org/10.3390/ma3042643
28.
28.R. Siegel, Thermal Radiation Heat Transfer (CRC press, 2001).
29.
29.K. Ellmer, A. Klein, and B. Rech, Transparent Conductive Zinc Oxide: Basics and Applications in Thin Film Solar Cells (Springer, Berlin, Germany, 2007).
30.
30.C. Jiang, X. Sun, G. Lo, D. Kwong, and J. Wang, Appl Phys Lett 90, 263501 (2007).
http://dx.doi.org/10.1063/1.2751588
31.
31.M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, Nat Mater 4, 455 (2005).
http://dx.doi.org/10.1038/nmat1387
32.
32.V. Manthina, J. P. Correa Baena, G. Liu, and A. G. Agrios, J Phys Chem C 116, 23864 (2012).
http://dx.doi.org/10.1021/jp304622d
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/9/10.1063/1.4932037
Loading
/content/aip/journal/adva/5/9/10.1063/1.4932037
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/9/10.1063/1.4932037
2015-09-25
2016-12-07

Abstract

Atmospheric pressureZnO microplasmas have been generated by high amplitude single pulses and DC voltages applied using micrometer-separated probes on ZnO nanoforests. The high voltage stress triggers plasma breakdown and breakdown in the surrounding air followed by sublimation of ZnO resulting in strong blue and white light emission with sharp spectral lines and non-linear current-voltage characteristics. The nanoforests are made of ZnO nanorods (NRs) grown on fluorine doped tin oxide (FTO) glass, poly-crystalline silicon and bulk p-type silicon substrates. The characteristics of the microplasmas depend strongly on the substrate and voltage parameters. Plasmas can be obtained with pulse durations as short as ∼1 μs for FTO glass substrate and ∼100 ms for the silicon substrates. Besides enabling plasma generation with shorter pulses, NRs on FTO glass substrate also lead to better tunability of the operating gas temperature. Hot and cold ZnO microplasmas have been observed with these NRs on FTO glass substrate. Sputtering of nanomaterials during plasma generation in the regions surrounding the test area has also been noticed and result in interesting ZnO nanostructures (‘nano-flowers’ and ‘nano-cauliflowers’). A practical way of generating atmospheric pressureZnO microplasmas may lead to various lighting, biomedical and material processing applications.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/9/1.4932037.html;jsessionid=eyLqcLTC091wlQud_7GAn-vS.x-aip-live-06?itemId=/content/aip/journal/adva/5/9/10.1063/1.4932037&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/9/10.1063/1.4932037&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/9/10.1063/1.4932037'
Right1,Right2,Right3,