Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Phys. Rev. Lett. 105(13), 136805 (2010).
2.B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nat. Nanotechnol. 6(3), 147-150 (2011).
3.Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang, ACS Nano 6(1), 74-80 (2011).
4.K. F. Mak, K. He, J. Shan, and T. F. Heinz, Nat. Nanotechnol. 7(8), 494-498 (2012).
5.Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Nat. Nanotechnol. 7(11), 699-712 (2012).
6.Y. Chen, J. Xi, D. O. Dumcenco, Z. Liu, K. Suenaga, D. Wang, Z. Shuai, Y.-S. Huang, and L. Xie, ACS Nano 7(5), 4610-4616 (2013).
7.R. Ganatra and Q. Zhang, ACS Nano 8(5), 4074-4099 (2014).
8.S. Bertolazzi, J. Brivio, and A. Kis, ACS Nano 5(12), 9703-9709 (2011).
9.L. F. Mattheiss, Phys. Rev. B 8(8), 3719-3740 (1973).
10.G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, Nano Lett. 11(12), 5111-5116 (2011).
11.B. Radisavljevic and A. Kis, Nat. Mater. 12(9), 815-820 (2013).
12.M. Kan, J. Y. Wang, X. W. Li, S. H. Zhang, Y. W. Li, Y. Kawazoe, Q. Sun, and P. Jena, J. Phys. Chem. C 118(3), 1515-1522 (2014).
13.K.-A. N. Duerloo, Y. Li, and E. J. Reed, Nat. Commun. 5, 4214 (2014).
14.Y.-C. Lin, D. O. Dumcenco, Y.-S. Huang, and K. Suenaga, Nat. Nanotechnol. 9(5), 391-396 (2014).
15.G. Eda, T. Fujita, H. Yamaguchi, D. Voiry, M. Chen, and M. Chhowalla, ACS Nano 6(8), 7311-7317 (2012).
16.R. Kappera, D. Voiry, S. E. Yalcin, B. Branch, G. Gupta, A. D. Mohite, and M. Chhowalla, Nat. Mater. 13(12), 1128-1134 (2014).
17.R. Kappera, D. Voiry, S. E. Yalcin, W. Jen, M. Acerce, S. Torrel, B. Branch, S. Lei, W. Chen, S. Najmaei, J. Lou, P. M. Ajayan, G. Gupta, A. D. Mohite, and M. Chhowalla, APL Materials 2(9), 092516 (2014).
18.L. Ci, L. Song, C. Jin, D. Jariwala, D. Wu, Y. Li, A. Srivastava, Z. F. Wang, K. Storr, L. Balicas, F. Liu, and P. M. Ajayan, Nat. Mater. 9(5), 430-435 (2010).
19.S. J. Haigh, A. Gholinia, R. Jalil, S. Romani, L. Britnell, D. C. Elias, K. S. Novoselov, L. A. Ponomarenko, A. K. Geim, and R. Gorbachev, Nat. Mater. 11(9), 764-767 (2012).
20.Z. Liu, L. Ma, G. Shi, W. Zhou, Y. Gong, S. Lei, X. Yang, J. Zhang, J. Yu, K. P. Hackenberg, A. Babakhani, J.-C. Idrobo, R. Vajtai, J. Lou, and P. M. Ajayan, Nat. Nanotechnol. 8(2), 119-124 (2013).
21.X. Duan, C. Wang, J. C. Shaw, R. Cheng, Y. Chen, H. Li, X. Wu, Y. Tang, Q. Zhang, A. Pan, J. Jiang, R. Yu, Y. Huang, and X. Duan, Nat. Nanotechnol. 9(12), 1024-1030 (2014).
22.G. Fiori, A. Betti, S. Bruzzone, and G. Iannaccone, ACS Nano 6(3), 2642-2648 (2012).
23.M. P. Levendorf, C.-J. Kim, L. Brown, P. Y. Huang, R. W. Havener, D. A. Muller, and J. Park, Nature 488(7413), 627-632 (2012).
24.K. Q. Dang and D. E. Spearot, J. Appl. Phys. 116(1), 013508 (2014).
25.S. Najmaei, M. Amani, M. L. Chin, Z. Liu, A. G. Birdwell, T. P. O’Regan, P. M. Ajayan, M. Dubey, and J. Lou, ACS Nano 8(8), 7930-7937 (2014).
26.A. M. van der Zande, P. Y. Huang, D. A. Chenet, T. C. Berkelbach, Y. You, G.-H. Lee, T. F. Heinz, D. R. Reichman, D. A. Muller, and J. C. Hone, Nat. Mater. 12(6), 554-561 (2013).
27.W. Zhou, X. Zou, S. Najmaei, Z. Liu, Y. Shi, J. Kong, J. Lou, P. M. Ajayan, B. I. Yakobson, and J.-C. Idrobo, Nano Lett. 13(6), 2615-2622 (2013).
28.P. Blöchl, Phys. Rev. B 50(24), 17953-17979 (1994).
29.G. Kresse and D. Joubert, Phys. Rev. B 59(3), 1758-1775 (1999).
30.J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77(18), 3865-3868 (1996).
31.K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, Proc. Natl. Acad. Sci. 102(30), 10451-10453 (2005).
32.J. Zhang, J. Zhao, and J. Lu, ACS Nano 6(3), 2704-2711 (2012).
33.J. Lahiri, Y. Lin, P. Bozkurt, I. I. Oleynik, and M. Batzill, Nat. Nanotechnol. 5(5), 326-329 (2010).
34.J. Zhang and J. Zhao, Carbon 55(0), 151-159 (2013).
35.M. Liu, Y. Li, P. Chen, J. Sun, D. Ma, Q. Li, T. Gao, Y. Gao, Z. Cheng, X. Qiu, Y. Fang, Y. Zhang, and Z. Liu, Nano Lett. 14(11), 6342-6347 (2014).
36.Q. Peng and S. De, Phys. Chem. Chem. Phys. 15(44), 19427-19437 (2013).
37.R. Grantab, V. B. Shenoy, and R. S. Ruoff, Science 330(6006), 946-948 (2010).

Data & Media loading...


Article metrics loading...



Two-dimensional (2D) molybdenum disulfide (MoS) phase hybrid system composed by 2H and 1T phase is a natural metal/semiconductor heterostructures and promised a wide range of potential applications. Here, we report the first principle investigations on the structural, mechanical and electronic properties of hybrid system with armchair (AC) and zigzag (ZZ) interfaces. The ZZ type 1T/2H interface are more energy favorable than AC type interface with 3.39 eV/nm. Similar with that of bulked 1T MoS, the intrinsic strengths of the heterostructures are lower than that of the bulk 2H, especially for that with ZZ interface. Analysis of density of states shows that the electronic properties gradually transmitted from the metallic 1T phase to the semiconducting 2H phase for the structural abrupt interface. The present theoretical results constitute a useful picture for the 2D electronic devices using current MoS 1T/2H heterostructures and provide vital insights into the other 2D hybrid materials.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd