Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/9/10.1063/1.4932042
1.
1.T.W. Latham, “Fluid motion in peristaltic pump,” M. S .Thesis, MIT, Cambridge, MA (1966).
2.
2.A. M. Siddiqui and W. H. Schwarz, “Peristaltic pumping of a third order fluid in a planner channel,” Rheol. Acta. 32, 47-56 (1993).
http://dx.doi.org/10.1007/BF00396676
3.
3.A. M. Siddiqui and W. H. Schwarz, “Peristaltic flow of a second order fluid in tubes,” J. Non Newtonian fluid mech. 53, 257-284 (1994).
http://dx.doi.org/10.1016/0377-0257(94)85052-6
4.
4.Kh. S. Mekheimer, “Peristaltic transport of couple stresses fluid in a uniform and non-uniform channels,” Biroheology 39, 755-765 (2002).
5.
5.Kh. S. Mekheimer, “Peristaltic flow of blood under the effect of a magnetic field in a non uniform channels,” Appl. Maths. Comput. 153, 763-777 (2004).
http://dx.doi.org/10.1016/S0096-3003(03)00672-6
6.
6.Kh. S. Mekheimer, “Non -linear peristaltic transport through a porous medium in an inclined planner channel,” J. Porous Media 6, 189-201 (2003).
http://dx.doi.org/10.1615/JPorMedia.v6.i3.40
7.
7.Kh. S. Mekheimer, E. F. El-Shehawey, and A. M. Elaw, “Peristaltic motion of a partial fluid suspension in a planner channel,” Int. J. Theor. Phys. 37, 2895-2920 (1998).
http://dx.doi.org/10.1023/A:1026657629065
8.
8.Kh. S. Mekheimer and Y. Abd. Elmaboud, “Peristaltic flow of a couple stress fluid in a annulus: Application of a endoscope,” Physica A 387, 2403-2415 (2008).
http://dx.doi.org/10.1016/j.physa.2007.12.017
9.
9.Kh. S mekheimer and Y.Abd. Elmaboud, “The influence of heat transfer and magnetic annulus : Application of an indoscope,” Phys. Letts. A 372, 1657-1665 (2008).
http://dx.doi.org/10.1016/j.physleta.2007.10.028
10.
10.T. Hayat, Y. wang, A. M. Siddiqui, K. Huttler, and S. Asghar, “Peristaltic transport of third order fluid in a circular cylindrical tube, Math,” Models and Methods in Appl. Sci. 12, 1691-1706 (2002).
http://dx.doi.org/10.1142/S0218202502002288
11.
11.T. Hayat, N. Ali, and S. Asgher, “Hall effects on peristaltic flow of a Maxwell fluid in a porous medium,” Phys. Letts. A 363, 397-403 (2007).
http://dx.doi.org/10.1016/j.physleta.2006.10.104
12.
12.T. Hayat, A. Tanveer, F. Alsaadi, and N. D. Alotaibi, “Homogeneous- heterogeneous reaction effects in peristalsis through curved geometry,” AIP Advances 5, 067172 (2015).
http://dx.doi.org/10.1063/1.4923396
13.
13.T. Hayat, Q. Hussin, and N. Ali, “Influence of partial slip in peristaltic flow in a porous medium,” Physica A 387, 3399-3409 (2008).
http://dx.doi.org/10.1016/j.physa.2008.02.040
14.
14.T. Hayat, M. Javed, and A. A. Hendi, “Peristaltic transport of viscous fluid in a curved channel with compliant walls,” Int. J. Heat Mass trans. 54, 1615-1621 (2011).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2010.11.022
15.
15.T. Hayat and N. Ali, “A mathematical description of peristaltic hydromagnetic flow in a tube,” Appl. Math. Comput. 188, 1491-1502 (2007).
http://dx.doi.org/10.1016/j.amc.2006.11.035
16.
16.T. Hayat and N. Ali, “Effect of an endoscope on peristaltic flow of a micropolar fluid,” Math. Comput. Model. 48, 721-733 (2008).
http://dx.doi.org/10.1016/j.mcm.2007.11.004
17.
17.Y. Wang, T. Hayat, and K. Huttler, “Peristaltic flow of a Johnson Segalman fluid through a deformable tube,” Theor. Comput. Fluid Dyn. 21, 369-380 (2007).
http://dx.doi.org/10.1007/s00162-007-0054-1
18.
18.N. Ali, T. Hayat, and M. Sajid, “Peristaltic flow of a couple stress fluid in an asymmetric channel,” Biorheology 44, 125-138 (2007).
19.
19.N. Ali, T. Hayat, and S. Asgher, “Peristaltic flow of a Maxwell fluid in a channel with compliant walls,” Chaos Sol. Fract. 39, 407-416 (2009).
http://dx.doi.org/10.1016/j.chaos.2007.04.010
20.
20.S. Srinivas and M. Kothandapni, “Peristaltic transport in an asymmetric channel with heat transfer – A note,” Int. Commu. Heat Mass trans. 35, 514-522 (2008).
http://dx.doi.org/10.1016/j.icheatmasstransfer.2007.08.011
21.
21.D. Tripathi, S. K Pandey, and S. Das, “Peristaltic flow of viscoelastic fluid with fractional Maxwell model through a channel,” Appl. Math. Comput. 215, 3645-3654 (2010).
http://dx.doi.org/10.1016/j.amc.2009.11.002
22.
22.F. M. Abbasi, T. Hayat, F. Alsaadi, A. M. Dobai, and H. Gao, “MHD peristaltic transport of spherical and cylindrical magneto- nanoparticles suspended in water,” AIP Advances 5, 077104 (2015).
http://dx.doi.org/10.1063/1.4926368
23.
23.M.V.S. Reddy, A.R. Rao, and S. Sreenadh, “Peristaltic motion of a power law fluid in an asymmetric channel,” Int. J.Nonlinear Mech. 42, 1153-1161 (2007).
http://dx.doi.org/10.1016/j.ijnonlinmec.2007.08.003
24.
24.M. S. Reddy, M. V. S. Reddy, and S. Ramakrishna, “Peristaltic motion of a carreau fluid through a porous medium in a channel under the effect of a magnetic field,” Far East Journal of Applied Mathematics 35, 141-158 (2009).
25.
25.K. Vajravelu, S. Sreenadh, and V.R. Babu, “Peristaltic transport of a Herschel- Bulkley fluid in an inclined tube,” Int. J. Non-linear Mech. 40, 83-69 (2005).
http://dx.doi.org/10.1016/j.ijnonlinmec.2004.07.001
26.
26.R. T. Steller, “Generalized Slit Flow of an Ellis fluid,” polymer engineering and science 41, 1859-1870 (2001).
http://dx.doi.org/10.1002/pen.10883
27.
27.F. A. Morrison, understanding rheology (Oxford University press, New York, 2001).
28.
28.H. S. Lew, Y.C. Fung, and C.B. Lowenstein, “Peristaltic carrying and mixing of Chyme in small intestine,” J.Biomechanics 4, 297-315 (1971).
http://dx.doi.org/10.1016/0021-9290(71)90036-4
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/9/10.1063/1.4932042
Loading
/content/aip/journal/adva/5/9/10.1063/1.4932042
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/9/10.1063/1.4932042
2015-09-25
2016-10-01

Abstract

An analysis is carried out to investigate the peristaltic pumping of a non-Newtonian Ellis fluid in a planar channel. The coupled nonlinear partial differential equations governing the problem are simplified under the widely used assumption of long wavelength and low Reynolds number. A semi- analytical approach is adopted to obtain the expressions for stream function, longitudinal velocity, pressure gradient and pressure rise per wavelength. The important characteristics of the peristaltic motion are explained graphically for several values of the material parameter of the Ellis fluid.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/9/1.4932042.html;jsessionid=iyIQ6OxUDrIVONV46un1c2Mt.x-aip-live-06?itemId=/content/aip/journal/adva/5/9/10.1063/1.4932042&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/9/10.1063/1.4932042&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/9/10.1063/1.4932042'
Right1,Right2,Right3,