Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/9/10.1063/1.4932044
1.
1.V. G. Kravets and A. N. Grigorenko, Appl. Phys. Lett. 97, 143701 (2010).
http://dx.doi.org/10.1063/1.3497646
2.
2.X. Sheng, L. Z. Broderick, and L. C. Kimerling, Opt. Commun. 314, 41-47 (2014).
http://dx.doi.org/10.1016/j.optcom.2013.07.085
3.
3.M. Jorgensen, K. Norrman, and F. C. Krebs, Sol. Energ. Mat. Sol. C 92, 686-714 (2008).
http://dx.doi.org/10.1016/j.solmat.2008.01.005
4.
4.H. Yan, Z. Zhou, and H. Lu, in Sustainable Power Generation and Supply, 2009 SUPERGEN’09 International Conference on. IEEE (2009), pp. 1-4.
5.
5.A. Lin, Y.-K. Zhong, S.-M. Fu, C. W. Tseng, and S. L. Yan, Opt. Express 22, A880-A894 (2014).
http://dx.doi.org/10.1364/OE.22.00A880
6.
6.R. Biswas and E. Timmons, Opt. Express 21, A841-A846 (2013).
http://dx.doi.org/10.1364/OE.21.00A841
7.
7.M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, Prog. Photovolt: Res. Appl. 21, 1 (2013).
http://dx.doi.org/10.1002/pip.2352
8.
8.W. Shockley and H. J. Queisser, J. Appl. Phys. 32, 510-519 (1961).
http://dx.doi.org/10.1063/1.1736034
9.
9.T. K. Mallick and P. C. Eames, Sol. Energ. Mat. Sol. C. 91, 597-608 (2007).
http://dx.doi.org/10.1016/j.solmat.2006.11.016
10.
10.T. Esram and P. L. Chapman, IEEE. Trans. Energy Conver. 22, 439 (2007).
http://dx.doi.org/10.1109/TEC.2006.874230
11.
11.Q. Huang, J. Wang, B. Quan, Q. Zhang, D. Zhang, D. Li, Q. Meng, L. Pan, Y. Wang, and G. Yang, Appl. Optics 52, 2312-2319 (2013).
http://dx.doi.org/10.1364/AO.52.002312
12.
12.M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, Science 321, 226-228 (2008).
http://dx.doi.org/10.1126/science.1158342
13.
13.J. H. Karp, E. J. Tremblay, J. M. Hallas, and J. E. Ford, Opt. Express 19, A673-A685 (2011).
http://dx.doi.org/10.1364/OE.19.00A673
14.
14.A. Goetzberger and C. Hebling, Sol. Energ. Mat. Sol. C. 62, 1-19 (2000).
http://dx.doi.org/10.1016/S0927-0248(99)00131-2
15.
15.G. Mariani, Z. Zhou, A. Scofield, and D. L. Huffaker, Nano Lett. 13, 1632-1637 (2013).
16.
16.J. M. Gordon, D. Feuermann, and P. Young, Opt. Lett. 33, 1114-1116 (2008).
http://dx.doi.org/10.1364/OL.33.001114
17.
17.C. H. Chou, J. K. Chuang, and F. C. Chen, Sci. Rep. 3, 2244 (2013).
http://dx.doi.org/10.1038/srep02244
18.
18.N. Sellami and T. K. Mallick, Appl. Energ. 102, 868-876 (2013).
http://dx.doi.org/10.1016/j.apenergy.2012.08.052
19.
19.Y. Yu, N. Liu, and R. Tang, Renew Energ. 62, 679-688 (2014).
http://dx.doi.org/10.1016/j.renene.2013.08.038
20.
20.T. K. Mallick, P. C. Eames, and B. Norton, Sol. Energy 80, 834-849 (2006).
http://dx.doi.org/10.1016/j.solener.2005.05.011
21.
21.E. D. Mammo, N. Sellami, and T. K. Mallick, Prog. Photovolt: Res. Appl. 21, 1095-1103 (2013).
22.
22.A. Zacharopoulos, P. C. Eames, D. McLarnon, and B. Norton, Sol. Energy 68, 439-452 (2000).
http://dx.doi.org/10.1016/S0038-092X(00)00013-X
23.
23.F. Purcell-Milton and Y. K. Gun’ko, J. Mater. Chem. 22, 16687-16697 (2012).
http://dx.doi.org/10.1039/c2jm32366d
24.
24.M. G. Debije and P. P. C. Verbunt, Adv. Energy Mater. 2, 12-35 (2012).
http://dx.doi.org/10.1002/aenm.201100554
25.
25.I. Coropceanu and M. G. Bawendi, Nano Lett. 14, 4097 (2014).
http://dx.doi.org/10.1021/nl501627e
26.
26.N. Sarmah, B. S. Richards, and T. K. Mallick, Appl. Optics 50, 3303-3310 (2011).
http://dx.doi.org/10.1364/AO.50.003303
27.
27.D. Jafrancesco, E. Sani, D. Fontani, L. Mercatelli, P. Sansoni, A. Giannini, and F. Francini, Int. J. Photoenergy 2012, 863654 (2011).
28.
28.A. J. Marston, K. J. Daun, and M. R. Collins, J. Sol. Energ-T ASME 132, 041002 (2010).
http://dx.doi.org/10.1115/1.4001674
29.
29.A. Timinger, A. Kribus, P. Doron, and H. Ries, Appl. Optics 39, 1152-1158 (2000).
http://dx.doi.org/10.1364/AO.39.001152
30.
30.A. Luque, G. L. Araújo, and A. Hilger, (1989).
31.
31.H. Pfeiffer and M. Bihler, Sol. Cells 5, 293-299 (1982).
http://dx.doi.org/10.1016/0379-6787(82)90045-X
32.
32.H. Baig, K. C. Heasman, and T. K. Mallick, Renew. Sust. Energ. Rev. 16, 5890-5909 (2012).
http://dx.doi.org/10.1016/j.rser.2012.06.020
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/9/10.1063/1.4932044
Loading
/content/aip/journal/adva/5/9/10.1063/1.4932044
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/9/10.1063/1.4932044
2015-09-25
2016-10-01

Abstract

A three-dimensional transparent parabolic concentrator made of polymethylmethacrylate (PMMA) was designed and fabricated for photovoltaic applications. The measured maximum concentration ratio of the concentrator is 8.31, which means that for normal incident light, optical energy can be concentrated as high as 8.31 times by the concentrator. Even for oblique incident lights with an incident angle of between 5° and 15°, the concentrator maintains a concentration ratio of between 6.81 and 3.72. The concentrator was connected to Si cell, which increased the maximum output power of the Si cell by 12 times, compared with that of the bare cell. This indicates that the concentrator can increase the energy generated by Si cell by 12 times.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/9/1.4932044.html;jsessionid=zfQsi_DeTCcI0SsURaUCD8mZ.x-aip-live-03?itemId=/content/aip/journal/adva/5/9/10.1063/1.4932044&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/9/10.1063/1.4932044&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/9/10.1063/1.4932044'
Right1,Right2,Right3,