Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/9/10.1063/1.4932087
1.
1.T.J. Kempa, J.F. Cahoon, S.K. Kim, R.W. Day, D.C. Bell, H.G. Park, and C.M. Lieber, PNAS 109, 1407 (2012).
http://dx.doi.org/10.1073/pnas.1120415109
2.
2.A. Yu, Z. Liang, J. Cho, and F. Caruso, Nano Lett. 3, 1203 (2003).
http://dx.doi.org/10.1021/nl034363j
3.
3.J. Su, L. Guo, N. Bao, and C.A. Grimes, Nano Lett. 11, 1928 (2011).
http://dx.doi.org/10.1021/nl2000743
4.
4.M.M.A. Hakim, M. Lombardini, K. Sun, F. Giustiniano, P. L. Roach, D. E. Davies, P. H. Howarth, M. R. R. de Planque, H. Morgan, and P. Ashburn, Nano Lett. 12, 1868 (2012).
http://dx.doi.org/10.1021/nl2042276
5.
5.J. Zhu, Z. Yu, G. F. Burkhard, C.M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, Nano Lett. 9, 279 (2009).
http://dx.doi.org/10.1021/nl802886y
6.
6.H.M. Kim, N.M. Kim, C.S. Park, S.U. Yuldashev, T.W. Kang, and K.S. Chung, Chem. Mater. 15, 3964 (2003).
http://dx.doi.org/10.1021/cm034534l
7.
7.F. Iwamoto, M. Seki, and H. Tabata, J. Appl. Phys. 112, 103901 (2012).
http://dx.doi.org/10.1063/1.4766410
8.
8.W. Kreuzpaintner, M. Stormer, D. Lott, D. Solina, and A. Schreyer, J. Appl. Phys. 104, 114302 (2008).
http://dx.doi.org/10.1063/1.3032383
9.
9.X. Zhou, R. Shen, Y. Ye, P. Zhu, Y. Hu, and L. Wu, J. Appl. Phys. 110, 094505 (2011).
http://dx.doi.org/10.1063/1.3658617
10.
10.F.J. Aparicio, I.B. Lezak, J.R.S. Valencia, M. Alcaire, J.C. Gonzalez, C. Serra, A.R.G. Elipe, and A. Barranco, J. Phys. Chem. C 116, 8731 (2012).
http://dx.doi.org/10.1021/jp209272s
11.
11.Y. Lu, R. Ganguli, C.A. Drewien, M.T. Anderson, C.J. Brinker, W. Gong, Y. Guo, H. Soyez, B. Dunn, M.H. Huang, and J.I. Zink, Nature 389, 364 (1997).
http://dx.doi.org/10.1038/38699
12.
12.Y. Kajikawa, K. Okamura, Y. Inoko, and H. Mizuki, J. Appl. Phys. 112, 123712 (2012).
http://dx.doi.org/10.1063/1.4770417
13.
13.S. Bijani, L. Martinez, M. Gabas, E.A. Dalchiele, and J.R.R. Barrado, J. Phys. Chem. C 113, 19482 (2009).
http://dx.doi.org/10.1021/jp905952a
14.
14.C.S. Kim, W.K. Youn, and N.M. Hwang, J. Appl. Phys. 108, 014313 (2010).
http://dx.doi.org/10.1063/1.3452352
15.
15.H. Colfen and M. Antonietti, Angew. Chem. 44, 5576 (2005).
http://dx.doi.org/10.1002/anie.200500496
16.
16.S. Weiner and H.D. Wagner, Annu. Rev. Mater. Sci. 28, 271 (1998).
http://dx.doi.org/10.1146/annurev.matsci.28.1.271
17.
17.L. Zhou, D. Smyth-Boyle, and P. O’Brien, J. Am.Chem. Soc. 130, 1309 (2008).
http://dx.doi.org/10.1021/ja076187c
18.
18.Z. Bian, T. Tachikawa, and T. Majima, J. Phys. Chem. Lett. 3, 1422 (2012).
http://dx.doi.org/10.1021/jz3005128
19.
19.X.L Wu, S.J. Xiong, Z. Liu, J. Chen, J.C. Shen, T.H. Li, P.H. Wu, and P.K. Chu, Nat. Nanotechnol. 6, 103 (2011).
http://dx.doi.org/10.1038/nnano.2010.264
20.
20.J. Ma, J. Teo, L. Mei, Z. Zhong, Q. Li, T. Wang, X. Duan, J. Lian, and W. Zheng, J. Mater. Chem. 22, 11694 (2012).
http://dx.doi.org/10.1039/c2jm30216k
21.
21.M. Xu, F. Wang, B. Ding, X. Song, and J. Fang, RSC Adv. 2, 2240 (2012).
http://dx.doi.org/10.1039/c2ra01119k
22.
22.N.A.M. Shanid and M. A. Khadar, Thin Solid Films 516, 6245 (2008).
http://dx.doi.org/10.1016/j.tsf.2007.11.119
23.
23.O. Koshy and M. A. Khadar, J. Appl. Phys. 109, 124315 (2011).
http://dx.doi.org/10.1063/1.3592650
24.
24.A. Mittiga, E. Salza, F. Sarto, M. Tucci, and R. Vasanthi, Appl. Phys. Lett. 88, 163502 (2006).
http://dx.doi.org/10.1063/1.2194315
25.
25.B.D. Cullity, Elements of X-ray Diffraction (Addison-Wesley Company, USA, 1978).
26.
26.G. Cao, Nanostructures & Nanomaterials: Synthesis, properties & applications (Imperial College Press, London, 2004).
27.
27.M. Niederberger and H. Colfen, Phys. Chem. Chem. Phys. 8, 3271 (2006).
http://dx.doi.org/10.1039/b604589h
28.
28.Y. Saito, Statistical Physics of Crystal Growth (World Scientific, Singapore, 1996).
29.
29.T. Vicsec, Fractal Growth Phenomena (World Scientific, Singapore, 1989).
30.
30.M.A. Khadar and N.A.M. Shanid, Surface & Coatings Technology 204, 1366 (2010).
http://dx.doi.org/10.1016/j.surfcoat.2009.09.023
31.
31.I. Umezu and A. Sugimura, Phys. Rev. B 76, 045328 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.045328
32.
32.A. Chen, H. Long, X. Li, Y. Li, G. Yang, and P. Lu, Vacuum 83, 927 (2009).
http://dx.doi.org/10.1016/j.vacuum.2008.10.003
33.
33.B. Balamurugan and B.R. Mehta, Thin Solid Films 396, 90 (2001).
http://dx.doi.org/10.1016/S0040-6090(01)01216-0
34.
34.V. Noack and A. Eychmüllar, Chem. Mater. 14, 1411 (2002).
http://dx.doi.org/10.1021/cm011262i
35.
35.K. Das, S.N. Sharma, M. Kumar, and S.K. De, J. Appl. Phys. 107, 024316 (2010).
http://dx.doi.org/10.1063/1.3295910
36.
36.S.B. Schmitt-Rink, D.A. Miller, and D.S. Chemla, Phys. Rev. B. 35, 8113 (1987).
http://dx.doi.org/10.1103/PhysRevB.35.8113
37.
37.M.C. Klein, F. Hache, D. Ricard, and C. Flytzanis, Phys. Rev. B 42, 11123 (1990).
http://dx.doi.org/10.1103/PhysRevB.42.11123
38.
38.M. Cardona, Light Scattering in Solids (Springer, Berlin, 1983).
39.
39.R.M. Martin, Phys. Rev. B. 4, 3676 (1971).
http://dx.doi.org/10.1103/PhysRevB.4.3676
40.
40.S.S. Kumar, M.A. Khadar, K.G.M. Nair, S. Dhara, and P. Magudapathy, J. Raman Spectrosc. 39, 1900 (2008).
http://dx.doi.org/10.1002/jrs.2056
41.
41.P.Y. Yu and Y.R. Shen, Phys. Rev. Lett. 32, 373 (1974).
http://dx.doi.org/10.1103/PhysRevLett.32.373
42.
42.N.A.M. Shanid, M.A. Khadar, and V.G Sathe, J. Raman Spectrosc. 42, 1769 (2011).
http://dx.doi.org/10.1002/jrs.2945
43.
43.See supplementary material at http://dx.doi.org/10.1063/1.4932087 for details of XRD and optical measurements data.[Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/9/10.1063/1.4932087
Loading
/content/aip/journal/adva/5/9/10.1063/1.4932087
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/9/10.1063/1.4932087
2015-09-25
2016-12-09

Abstract

A strategy for creating nanostructured films is the alignment of nanoparticles into ordered superstructures as living organisms synthesize biomaterials with superior physical properties using nanoparticle building blocks. We synthesized nanostructured films of Cu O of variable grain size by establishing the condition of supersaturation for creation of nanoparticles of copper which deposited as nanograined films and which was then oxidized. This technique has the advantage of being compatible with conventional vacuum processes for electronic device fabrication. The Cu O film samples consisted of a secondary structure of spherical particles of almost uniform size, each particle being an agglomerate of primary nanocrystals. Fractal analysis of the AFM images of the samples is carried out for studying the aggregation mechanism. Grain size tuning of the nanostructured Cu O films has been studied using XRD, and micro-Raman and photoluminescence spectroscopy.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/9/1.4932087.html;jsessionid=lDsGf5JJJh2SPkQoiIDpo2ll.x-aip-live-02?itemId=/content/aip/journal/adva/5/9/10.1063/1.4932087&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/9/10.1063/1.4932087&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/9/10.1063/1.4932087'
Right1,Right2,Right3,