Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.P. Martyniuk, J. Antoszewski, M. Martyniuk, L. Faraone, and A. Rogalski, Appl. Phys. Rev. 1, 041102 (2014).
2.M. Razeghi and B.-H. Nguyen, Rep. Prog. Phys. 77, 082401 (2014).
3.H. J. Haugan, F. Szmulowicz, K. Mahalingam, G. J. Brown, S. R Munshi, and B. Ullrich, Appl. Phys. Lett. 87, 261106 (2005).
4.K. Seeger, Semiconductor Physics (Springer-Verlag, New York, 1973).
5.A. Chondola, R. Pino, and P. S. Dutta, Semicond. Sci. Technol. 20, 886 (2005).
6.L. P. Allen, P. Flint, G. Dallas, D. Bakken, K. Blanchat, G. J. Brown, S. R. Vangala, W. D. Goodhue, and K. Krishnaswami, Proc. SPIE 7298, 72983P-1 (2009).
7.H. J. Haugan, G. J. Brown, F. Szmulowicz, L. Grazulis, W. C. Mitchel, S. Elhamri, and W. D. Mitchell, J. Cryst. Growth 278, 198 (2005).
8.V. Virkkala, V. Havu, F. Tuomisto, and M. J. Puska, Phys. Rev. B 86, 144101 (2012).
9.E. T. R. Chidley, S. K. Haywood, A. B. Henriques, N. J. Mason, R. J. Nicholas, and P. J. Walker, Semicond. Sci. Technol. 6, 45 (1991).
10.C. D. Kourkoutas, P. D. Bekris, G. J. Papaioannou, and P. C. Euthymiou, Solid State Commun. 49, 1071 (1984).
11.R.-Y. Sun and W. M. Becker, Phys. Rev. B 10, 3436 (1974).
12.A. Sagar, Phys. Rev. 117, 93 (1960).
13.A. G. Milnes and A. Y. Polykov, Solid-State Electron. 36, 803 (1993).
14.J. S. Kim, D. J. Seiler, and W. F. Tseng, J. Appl. Phys. 73, 8324 (1993).
15.D. Martin and C. Algora, Semicond. Sci. Technol. 19, 1040 (2004).
16.M. Lee, D. J. Nicholas, K. E. Singer, and B. Hamilton, J. Appl. Phys. 59, 2895 (1986).
17.R. Pino, Y. Ko, and P. S. Dutta, J. Appl. Phys. 96, 1064 (2004).
18.B. I. Shklovskii and A. L. Efros, Electronic Properties of Doped Semiconductors (Springer-Verlag, New York, 1984).
19.R. Kudrawiec, H. P. Nair, M. Latkowska, J. Misiewicz, S. R. Bank, and W. Walukiewicz, J. Appl. Phys. 112, 123513 (2012).
20.S. V. Ivanov, P. D. Altukhov, T. S. Argunova, A. A. Bakun, A. A. Budza, V. V. Chaldyshev, Yu. A. Kovalenko, P. S. Kop’ev, R. N. Kutt, B. Ya. Meltser, S. S. Ruvimov, S. V. Shaposhnikov, I. M. Sorokin, and V. M. Ustinov, Semicond. Sci. Technol. 8, 347 (1993).
21.G. R. Johnson, B. C. Cavenett, T. M. Kerr, P. B. Kirby, and C. E. C. Wood, Semicond. Sci. Technol. 3, 1157 (1988).

Data & Media loading...


Article metrics loading...



Lightly doped n-type GaSb substrates with p-type GaSb buffer layers are the preferred templates for growth of InAs/InGaSb superlattices used in infrared detector applications because of relatively high infrared transmission and a close lattice match to the superlattices. We report here temperature dependent resistivity and Hall effect measurements of bare substrates and substrate-p-type buffer layer structures grown by molecular beam epitaxy. Multicarrier analysis of the resistivity and Hall coefficient data demonstrate that high temperature transport in the substrates is due to conduction in both the high mobility zone center Γ band and the low mobility off-center L band. High overall mobility values indicate the absence of close compensation and that improved infrared and transport properties were achieved by a reduction in intrinsic acceptor concentration. Standard transport measurements of the undoped buffer layers show p-type conduction up to 300 K indicating electrical isolation of the buffer layer from the lightly n-type GaSb substrate. However, the highest temperature data indicate the early stages of the expected p to n type conversion which leads to apparent anomalously high carrier concentrations and lower than expected mobilities. Data at 77 K indicate very high quality buffer layers.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd