Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/9/10.1063/1.4932212
1.
1.P.G. Karagiannidis, S. Kassavetis, C. Pitsalidis, and S. Logothetidis, Thin Solid Films 519, 4105 (2011).
http://dx.doi.org/10.1016/j.tsf.2011.01.196
2.
2.U. Zhokhavets, T. Erb, H. Hoppe, G. Gobsch, and N.S. Sariciftci, Thin Solid Films 496, 679 (2006).
http://dx.doi.org/10.1016/j.tsf.2005.09.093
3.
3.Y. Kim, S.A. Choulis, J. Nelson, D.D.C. Bradley, S. Cook, and J.R. Durrant, Appl. Phys. Lett. 86, 1 (2005).
http://dx.doi.org/10.1016/j.physletb.2005.01.019
4.
4.T.J. Savenije, J.E. Kroeze, X. Yang, and J. Loos, Adv. Funct. Mater. 15, 1260 (2005).
http://dx.doi.org/10.1002/adfm.200400559
5.
5.G. Li, Y. Yao, H. Yang, V. Shrotriya, G. Yang, and Y. Yang, Adv. Funct. Mater. 17, 1636 (2007).
http://dx.doi.org/10.1002/adfm.200600624
6.
6.A. Bagui and S.S.K. Iyer, IEEE Trans. Electron Dev. 58, 4061 (2011).
http://dx.doi.org/10.1109/TED.2011.2164545
7.
7.B.A. Collins, J.R. Tumbleston, and H. Ade, J. Phys. Chem. Lett. 2, 3135 (2011).
http://dx.doi.org/10.1021/jz2014902
8.
8.W. Yin and M. Dadmun, ACS Nano 5, 4756 (2011).
http://dx.doi.org/10.1021/nn200744q
9.
9.B. Watts, W.J. Belcher, L. Thomsen, H. Ade, and P.C. Dastoor, Macromolecules 42, 8392 (2009).
http://dx.doi.org/10.1021/ma901444u
10.
10.M.T. Dang, L. Hirsch, and G. Wantz, Adv. Mater. 23, 3597 (2011).
http://dx.doi.org/10.1002/adma.201100792
11.
11.B.A. Collins, E. Gann, L. Guignard, X. He, C.R. McNeill, and H. Ade, J. Phys. Chem. Lett. 1, 3160 (2010).
http://dx.doi.org/10.1021/jz101276h
12.
12.D.R. Kozub, K. Vakhshouri, L.M. Orme, C. Wang, A. Hexemer, and E.D. Gomez, Macromolecules 44, 5722 (2011).
http://dx.doi.org/10.1021/ma200855r
13.
13.J.G. Labram, J. Kirkpatrick, D.D.C. Bradley, and T.D. Anthopoulos, Phys. Rev. B. 84, 075344 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.075344
14.
14.J.G. Labram, J. Kirkpatrick, D.D.C. Bradley, and T.D. Anthopoulos, Adv. Funct. Mat. 1, 1176 (2011).
15.
15.N.D. Treat, M.A. Brady, G. Smith, M.F. Toney, E.J. Kramer, C.J. Hawker, and M.L. Chabinyc, Adv. Energy Mater. 1, 82 (2011).
http://dx.doi.org/10.1002/aenm.201000023
16.
16.N.D. Treat, T.E. Mates, C.J. Hawker, E.J. Kramer, and M.L. Chabinyc, Macromolecules 46, 1002 (2013).
http://dx.doi.org/10.1021/ma302337p
17.
17.G. Berriman, B. Routley, J. Holdsworth, X. Zhou, W. Belcher, and P. Dastoor, Meas. Sci. Tech. 25, 095901 (2014).
http://dx.doi.org/10.1088/0957-0233/25/9/095901
18.
18.B. Xue, B. Vaughan, C. Poh, K. B. Burke, L. Thomsen, A. Stapleton, X. Zhou, G.W. Bryant, W. Belcher, and P.C. Dastoor, J. Phys. Chem. C 114, 15797 (2010).
http://dx.doi.org/10.1021/jp104695j
19.
19.P.G. Karagiannidis, D. Georgiou, C. Pitsalidis, A. Laskarakis, and S. Logothetidis, Mater. Chem. Phys. 129, 1207 (2011).
http://dx.doi.org/10.1016/j.matchemphys.2011.06.007
20.
20.M.A. Ruderer, S. Guo, R. Meier, H.-Y. Chiang, V. Körstgens, J. Wiedersich, J. Perlich, S.V. Roth, and P. Müller-Buschbaum, Adv. Funct. Mater. 21, 3382 (2011).
http://dx.doi.org/10.1002/adfm.201100945
21.
21.M. Campoy-Quiles, T. Ferenczi, T. Agostinelli, P.G. Etchegoin, Y. Kim, T.D. Anthopoulos, P.N. Stavrinou, and D.D.C. Bradley, J. Nelson, Nat. Mater. 7, 158 (2008).
http://dx.doi.org/10.1038/nmat2102
22.
22.P. Neogi, Diffusion in Polymers (Marcel Dekker, New York, 1996).
23.
23.A. R. Berens and H.B. Hopfenberg, J. Memb. Sci. 10, 283 (1982).
http://dx.doi.org/10.1016/S0376-7388(00)81415-5
24.
24.A. Einstein, Ann. Phys. 17, 549 (1905).
http://dx.doi.org/10.1002/andp.19053220806
25.
25.R.H. Colby, L.J. Fetters, and W.W. Graessley, Macromolecules 20, 2226 (1987).
http://dx.doi.org/10.1021/ma00175a030
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/9/10.1063/1.4932212
Loading
/content/aip/journal/adva/5/9/10.1063/1.4932212
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/9/10.1063/1.4932212
2015-09-29
2016-09-25

Abstract

The diffusion of PCBM in P3HT:PCBM blend films has been investigated using multi-wavelength scanning absorption microscopy (MWSAM). By studying the depletion of PCBM in the vicinity of the phase segregated PCBM-rich regions that form upon thermal annealing, we are able to measure the diffusion constant and activation energy for PCBM diffusion in P3HT:PCBM blend films. The measured kinetic parameters are consistent with the diffusion of nanoscale PCBM crystallites rather than molecular PCBM. We show that the presence of two distinct diffusion processes in these blend materials provides an explanation for the large differences that have been reported for PCBM diffusion in P3HT:PCBM blends. This insight allows us to develop a unified model for PCBM mass transport in these materials.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/9/1.4932212.html;jsessionid=zB_CyQL2LMTtQXfpAO0WZ0ZP.x-aip-live-02?itemId=/content/aip/journal/adva/5/9/10.1063/1.4932212&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/9/10.1063/1.4932212&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/9/10.1063/1.4932212'
Right1,Right2,Right3,