Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/9/10.1063/1.4932381
1.
1.S. Wei, Q. Wang, J. Zhu, L. Sun, H. Lin, and Z. Guo, Nanoscale 3, 4474 (2011).
http://dx.doi.org/10.1039/c1nr11000d
2.
2.Q. He, T. Yuan, S. Wei, N. Haldolaarachchige, Z. Luo, D. P. Young, A. Khasanov, and Z. Guo, Angew. Chem. Int. Ed. 51, 8842 (2012).
http://dx.doi.org/10.1002/anie.201203347
3.
3.X. Zhang, S. Wei, N. Haldolaarachchige, H. A. Colorado, Z. Luo, D. P. Young, and Z. Guo, J. Chem. Phys. C 116, 15731 (2012).
http://dx.doi.org/10.1021/jp303226u
4.
4.J. Zhu, S. Wei, Y. Li, L. Sun, N. Haldolaarachchige, D. P. Young, C. Southworth, A. Khasanov, Z. Luo, and Z. Guo, Macromolecules 44, 4382 (2011).
http://dx.doi.org/10.1021/ma102684f
5.
5.R. Ernst and W. Anderson, Rev. Sci. Instrum. 37, 93 (1966).
http://dx.doi.org/10.1063/1.1719961
6.
6.W. Aue, E. Bartholdi, and R. R. Ernst, J. Chem. Phys. 64, 2229 (1976).
http://dx.doi.org/10.1063/1.432450
7.
7.Y.-w. Jun, Y.-M. Huh, J.-s. Choi, J.-H. Lee, H.-T. Song, S. Kim, S. Kim, S. Yoon, K.-S. Kim, and J.-S. Shin, J. Am. Chem. Soc. 127, 5732 (2005).
http://dx.doi.org/10.1021/ja0422155
8.
8.A.-H. Lu, E. L. Salabas, and F. Schüth, Angew. Chem. Int. Ed. 46, 1222 (2007).
http://dx.doi.org/10.1002/anie.200602866
9.
9.H. Gu, Y. Huang, X. Zhang, Q. Wang, J. Zhu, L. Shao, N. Haldolaarachchige, D. P. Young, S. Wei, and Z. Guo, Polymer 53, 801 (2012).
http://dx.doi.org/10.1016/j.polymer.2011.12.033
10.
10.H. Gu, X. Zhang, H. Wei, Y. Huang, S. Wei, and Z. Guo, Chem Soc Rev. 42, 5907 (2013).
http://dx.doi.org/10.1039/c3cs60074b
11.
11.B. Qiu, J. Guo, Y. Wang, X. Wei, Q. Wang, D. Sun, M. A. Khan, D. P. Young, R. O’Connor, X. Huang, X. Zhang, B. L. Weeks, S. Wei, and Z. Guo, J. Mater. Chem. C 3, 3989 (2015).
http://dx.doi.org/10.1039/C4TC02578D
12.
12.Q. He, T. Yuan, X. Zhang, X. Yan, J. Guo, D. Ding, M. A. Khan, D. P. Young, A. Khasanov, Z. Luo, J. Liu, T. D. Shen, X. Liu, S. Wei, and Z. Guo, J. Phys. Chem. C 118, 24784 (2014).
http://dx.doi.org/10.1021/jp507975r
13.
13.J. Zhu, S. Wei, N. Haldolaarachchige, D. P. Young, and Z. Guo, J. Phys. Chem. C 115, 15304 (2011).
http://dx.doi.org/10.1021/jp2052536
14.
14.Z. Guo, S. Park, H. T. Hahn, S. Wei, M. Moldovan, A. B. Karki, and D. P. Young, J. Appl. Phys. 101, 09M511 (2007).
15.
15.B. Qiu, H. Gu, X. Yan, J. Guo, Y. Wang, D. Sun, Q. Wang, M. Khan, X. Zhang, B. L. Weeks, D. P. Young, Z. Guo, and S. Wei, J. Mater. Chem. A 2, 17454 (2014).
http://dx.doi.org/10.1039/C4TA04040F
16.
16.B. Qiu, Y. Wang, D. Sun, Q. Wang, X. Zhang, B. L. Weeks, R. O’Connor, X. Huang, S. Wei, and Z. Guo, J. Mater. Chem. A 3, 9817 (2015).
http://dx.doi.org/10.1039/C5TA01227A
17.
17.J. Zhu, R. Sadu, S. Wei, D. H. Chen, N. Haldolaarachchige, Z. Luo, J. A. Gomes, D. P. Young, and Z. Guo, ECS J. Solid State Sci. Technol. 1, M1 (2012).
http://dx.doi.org/10.1149/2.010201jss
18.
18.J. Zhu, S. Wei, H. Gu, S. B. Rapole, Q. Wang, Z. Luo, N. Haldolaarachchige, D. P. Young, and Z. Guo, Environ. Sci. Technol. 46, 977 (2012).
http://dx.doi.org/10.1021/es2014133
19.
19.D. Zhang, S. Wei, C. Kaila, X. Su, J. Wu, A. B. Karki, D. P. Young, and Z. Guo, Nanoscale 2, 917 (2010).
http://dx.doi.org/10.1039/c0nr00065e
20.
20.J. Zhu, M. Chen, H. Qu, Z. Luo, S. Wu, H. A. Colorado, S. Wei, and Z. Guo, Energ. Environ, Sci. 6, 194 (2013).
http://dx.doi.org/10.1039/C2EE23422J
21.
21.H. Wang, Z. Xu, H. Yi, H. Wei, Z. Guo, and X. Wang, Nano Energy 7, 86 (2014).
http://dx.doi.org/10.1016/j.nanoen.2014.04.009
22.
22.J. Zhu, M. Chen, H. Wei, N. Yerra, N. Haldolaarachchige, Z. Luo, D. P. Young, T. C. Ho, S. Wei, and Z. Guo, Nano Energy 6, 180 (2014).
http://dx.doi.org/10.1016/j.nanoen.2014.04.002
23.
23.K. Raj, B. Moskowitz, and R. Casciari, J. Magn. Magn. Mater. 149, 174 (1995).
http://dx.doi.org/10.1016/0304-8853(95)00365-7
24.
24.A. S. Lübbe, C. Alexiou, and C. Bergemann, J. Surg. Res. 95, 200 (2001).
http://dx.doi.org/10.1006/jsre.2000.6030
25.
25.Y. Liu, Y. Wang, S. Zhou, S. Lou, L. Yuan, T. Gao, X. Wu, X. Shi, and K. Wang, ACS Appl. Mat. Interfaces 4, 4913 (2012).
http://dx.doi.org/10.1021/am301239u
26.
26.S. Xuan, F. Wang, J. M. Lai, K. W. Sham, Y.-X. J. Wang, S.-F. Lee, J. C. Yu, C. H. Cheng, and K. C.-F. Leung, ACS Appl. Mat. Interfaces 3, 237 (2011).
http://dx.doi.org/10.1021/am1012358
27.
27.L. Wang, H. Ji, S. Wang, L. Kong, X. Jiang, and G. Yang, Nanoscale 5, 3793 (2013).
http://dx.doi.org/10.1039/c3nr00256j
28.
28.J. Lee, J. Yang, H. Ko, S. Oh, J. Kang, J. Son, K. Lee, S. W. Lee, H. G. Yoon, and J. S. Suh, Adv. Funct. Mater. 18, 258 (2008).
http://dx.doi.org/10.1002/adfm.200700482
29.
29.D.-H. Kim, D. E. Nikles, and C. S. Brazel, Materials 3, 4051 (2010).
http://dx.doi.org/10.3390/ma3074051
30.
30.X.-J. Zhang, G.-S. Wang, W.-Q. Cao, Y.-Z. Wei, J. Liang, L. Guo, and M.-S. Cao, ACS Appl. Mat. Interfaces 6, 7471 (2014).
http://dx.doi.org/10.1021/am500862g
31.
31.S. Kumar, R. R. Nair, P. B. Pillai, S. N. Gupta, M. Iyengar, and A. K. Sood, ACS Appl. Mat. Interfaces 6, 17426 (2014).
http://dx.doi.org/10.1021/am504826q
32.
32.Y. Wang, T. Li, L. Zhao, Z. Hu, and Y. Gu, Energy. Power. Eng. 3, 580 (2011).
http://dx.doi.org/10.4236/epe.2011.34072
33.
33.C. Liu and Z. J. Zhang, Chem. Mater. 13, 2092 (2001).
http://dx.doi.org/10.1021/cm0009470
34.
34.D. Zhang, A. B. Karki, D. Rutman, D. P. Young, A. Wang, D. Cocke, T. H. Ho, and Z. Guo, Polymer 50, 4189 (2009).
http://dx.doi.org/10.1016/j.polymer.2009.06.062
35.
35.C. R. Vestal and Z. J. Zhang, Nano Lett. 3, 1739 (2003).
http://dx.doi.org/10.1021/nl034816k
36.
36.C. R. Vestal and Z. J. Zhang, J. Am. Chem. Soc. 125, 9828 (2003).
http://dx.doi.org/10.1021/ja035474n
37.
37.H. Jin, C. L. Mangun, D. S. Stradley, J. S. Moore, N. R. Sottos, and S. R. White, Polymer 53, 581 (2012).
http://dx.doi.org/10.1016/j.polymer.2011.12.005
38.
38.H. Pingsheng, Z. Zhiqiang, P. Caiyuan, and W. Renjie, J. Mater. Sci. 24, 1528 (1989).
http://dx.doi.org/10.1007/BF01105666
39.
39.C. Li, K. Potter, M. R. Wisnom, and G. Stringer, Compos. Sci. Technol. 64, 55 (2004).
http://dx.doi.org/10.1016/S0266-3538(03)00199-4
40.
40.D. Zhang and D. Jia, J. Appl. Polym. Sci. 101, 2504 (2006).
http://dx.doi.org/10.1002/app.23760
41.
41.K. Wang, L. Chen, J. Wu, M. L. Toh, C. He, and A. F. Yee, Macromolecules 38, 788 (2005).
http://dx.doi.org/10.1021/ma048465n
42.
42.V. Mišković-Stanković, M. Stanić, and D. Dražić, Prog. Org. Coat. 36, 53 (1999).
http://dx.doi.org/10.1016/S0300-9440(99)00024-7
43.
43.M. Fini, G. Giavaresi, N. N. Aldini, P. Torricelli, R. Botter, D. Beruto, and R. Giardino, Biomaterials 23, 4523 (2002).
http://dx.doi.org/10.1016/S0142-9612(02)00196-5
44.
44.E. Tuncer, I. Sauers, D. R. James, A. R. Ellis, M. P. Paranthaman, T. Aytuğ, S. Sathyamurthy, K. L. More, J. Li, and A. Goyal, Nanotechnology 18, 025703 (2007).
http://dx.doi.org/10.1088/0957-4484/18/2/025703
45.
45.T. C. Clancy, S. Frankland, J. Hinkley, and T. Gates, Polymer 50, 2736 (2009).
http://dx.doi.org/10.1016/j.polymer.2009.04.021
46.
46.J. Zhu, S. Wei, J. Ryu, M. Budhathoki, G. Liang, and Z. Guo, J. Mater. Chem. 20, 4937 (2010).
http://dx.doi.org/10.1039/c0jm00063a
47.
47.I. Zaman, T. T. Phan, H.-C. Kuan, Q. Meng, L. T. Bao La, L. Luong, O. Youssf, and J. Ma, Polymer 52, 1603 (2011).
http://dx.doi.org/10.1016/j.polymer.2011.02.003
48.
48.A. Balakrishnan and M. C. Saha, Mater. Sci. Eng., A 528, 906 (2011).
http://dx.doi.org/10.1016/j.msea.2010.09.064
49.
49.M. A. Rafiee, J. Rafiee, Z. Wang, H. Song, Z.-Z. Yu, and N. Koratkar, ACS Nano 3, 3884 (2009).
http://dx.doi.org/10.1021/nn9010472
50.
50.J. Zhu, S. Wei, A. Yadav, and Z. Guo, Polymer 51, 2643 (2010).
http://dx.doi.org/10.1016/j.polymer.2010.04.019
51.
51.J. Zhu, S. Wei, J. Ryu, L. Sun, Z. Luo, and Z. Guo, ACS Appl. Mat. Interfaces 2, 2100 (2010).
http://dx.doi.org/10.1021/am100361h
52.
52.H. Gu, S. Tadakamalla, Y. Huang, H. A. Colorado, Z. Luo, N. Haldolaarachchige, D. P. Young, S. Wei, and Z. Guo, ACS Appl. Mat. Interfaces 4, 5613 (2012).
http://dx.doi.org/10.1021/am301529t
53.
53.J. Wang and S. Qin, Mater. Lett. 61, 4222 (2007).
http://dx.doi.org/10.1016/j.matlet.2007.01.058
54.
54.X. Zhang, Q. He, H. Gu, H. A. Colorado, S. Wei, and Z. Guo, ACS Appl. Mater. Interfaces. 5, 898 (2013).
http://dx.doi.org/10.1021/am302563w
55.
55.X. Zhang, X. Yan, J. Guo, Z. Liu, D. Jiang, Q. He, H. Wei, H. Gu, H. A. Colorado, X. Zhang, S. Wei, and Z. Guo, J. Mater. Chem. C. 3, 162 (2015).
http://dx.doi.org/10.1039/C4TC01978D
56.
56.L. H. Sinh, B. T. Son, N. N. Trung, D.-G. Lim, S. Shin, and J.-Y. Bae, React. Funct. Polym. 72, 542 (2012).
http://dx.doi.org/10.1016/j.reactfunctpolym.2012.05.004
57.
57.X. Zhang, O. Alloul, Q. He, J. Zhu, M. J. Verde, Y. Li, S. Wei, and Z. Guo, Polymer 54, 3594 (2013).
http://dx.doi.org/10.1016/j.polymer.2013.04.062
58.
58.B. Qi, Q. X. Zhang, M. Bannister, and Y. W. Mai, Compos. Struct. 75, 514 (2006).
http://dx.doi.org/10.1016/j.compstruct.2006.04.032
59.
59.M. Abdalla, D. Dean, D. Adibempe, E. Nyairo, P. Robinson, and G. Thompson, Polymer 48, 5662 (2007).
http://dx.doi.org/10.1016/j.polymer.2007.06.073
60.
60.M. E. Mackay, T. T. Dao, A. Tuteja, D. L. Ho, B. Van Horn, H.-C. Kim, and C. J. Hawker, Nat. Mater. 2, 762 (2003).
http://dx.doi.org/10.1038/nmat999
61.
61.X. Zhang, O. Alloul, J. Zhu, Q. He, Z. Luo, H. A. Colorado, N. Haldolaarachchige, D. P. Young, T. Shen, and S. Wei, RSC Advances 3, 9453 (2013).
http://dx.doi.org/10.1039/c3ra41233d
62.
62.W. J. Boo, L. Sun, G. L. Warren, E. Moghbelli, H. Pham, A. Clearfield, and H. J. Sue, Polymer 48, 1075 (2007).
http://dx.doi.org/10.1016/j.polymer.2006.12.042
63.
63.H. Metwally and R. Manglik, Int. J. Heat Mass Transfer 47, 2283 (2004).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2003.11.019
64.
64.L. Wang, I. Meric, P. Huang, Q. Gao, Y. Gao, H. Tran, T. Taniguchi, K. Watanabe, L. Campos, and D. Muller, Science 342, 614 (2013).
http://dx.doi.org/10.1126/science.1244358
65.
65.A. Tuteja, P. M. Duxbury, and M. E. Mackay, Macromolecules 40, 9427 (2007).
http://dx.doi.org/10.1021/ma071313i
66.
66.A. Hauk, M. Sklorz, G. Bergmann, and O. Hutzinger, J. Anal. Appl. Pyrolysis 31, 141 (1995).
http://dx.doi.org/10.1016/0165-2370(94)00820-Q
67.
67.M. Kinoshita, T. Nemoto, T. Souda, and K. Takeda, Polym. Degrad. Stab. 68, 437 (2000).
http://dx.doi.org/10.1016/S0141-3910(00)00033-1
68.
68.R. Heyrovska, arXiv preprint arXiv:0807.4140 (2008).
69.
69.Y. Pan, Y. Xu, L. An, H. Lu, Y. Yang, W. Chen, and S. Nutt, Macromolecules 41, 9245 (2008).
http://dx.doi.org/10.1021/ma800819s
70.
70.Y. Shi, S. Peterson, and D. Y. Sogah, Chem. Mater. 19, 1552 (2007).
http://dx.doi.org/10.1021/cm060593y
71.
71.G. Wisanrakkit, J. Gillham, and J. Enns, J. Appl. Polym. Sci. 41, 1895 (1990).
http://dx.doi.org/10.1002/app.1990.070410743
72.
72.Y. Sun, Z. Zhang, K.-S. Moon, and C. P. Wong, J. Polym. Sci., Part B: Polym. Phys. 42, 3849 (2004).
http://dx.doi.org/10.1002/polb.20251
73.
73.B. Fabry, G. N. Maksym, J. P. Butler, M. Glogauer, D. Navajas, and J. J. Fredberg, Phys. Rev. Lett. 87, 148102 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.148102
74.
74.Z. Guo, T. Pereira, O. Choi, Y. Wang, and H. T. Hahn, J. Mater. Chem. 16, 2800 (2006).
http://dx.doi.org/10.1039/b603020c
75.
75.J. Guo, H. Gu, H. Wei, Q. Zhang, N. Haldolaarachchige, Y. Li, D. P. Young, S. Wei, and Z. Guo, J. Phys. Chem. C 117, 10191 (2013).
http://dx.doi.org/10.1021/jp402236n
76.
76.Z. Guo, L. L. Henry, V. Palshin, and E. J. Podlaha, J. Mater. Chem. 16, 1772 (2006).
http://dx.doi.org/10.1039/B515565G
77.
77.J. P. Chen, C. M. Sorensen, K. J. Klabunde, and G. C. Hadjipanayis, J. Appl. Phys. 76, 6316 (1994).
http://dx.doi.org/10.1063/1.358280
78.
78.H.-M. Xiao, X.-M. Liu, and S.-Y. Fu, Compos. Sci. Technol. 66, 2003 (2006).
http://dx.doi.org/10.1016/j.compscitech.2006.01.001
79.
79.K. R. O’Neal, T. V. Brinzari, J. B. Wright, C. Ma, S. Giri, J. A. Schlueter, Q. Wang, P. Jena, Z. Liu, and J. L. Musfeldt, Sci. Rep 4, 1 (2014).
80.
80.X. Chen, S. Wei, A. Yadav, R. Patil, J. Zhu, R. Ximenes, L. Sun, and Z. Guo, Macromol. Mater. Eng. 296, 434 (2011).
http://dx.doi.org/10.1002/mame.201000341
81.
81.A. Dimiev, W. Lu, K. Zeller, B. Crowgey, L. C. Kempel, and J. M. Tour, ACS Appl. Mat. Interfaces 3, 4657 (2011).
http://dx.doi.org/10.1021/am201071h
82.
82.A. Schönhals, H. Goering, F. R. Costa, U. Wagenknecht, and G. Heinrich, Macromolecules 42, 4165 (2009).
http://dx.doi.org/10.1021/ma900077w
83.
83.Y. Li, J. Zhu, S. Wei, J. Ryu, L. Sun, and Z. Guo, Macromol. Chem. Phys. 212, 1951 (2011).
http://dx.doi.org/10.1002/macp.201100263
84.
84.J. Lu, K.-S. Moon, B.-K. Kim, and C. Wong, Polymer 48, 1510 (2007).
http://dx.doi.org/10.1016/j.polymer.2007.01.057
85.
85.C. Brosseau, J. B. Youssef, P. Talbot, and A.-M. Konn, J. Appl. Phys. 93, 9243 (2003).
http://dx.doi.org/10.1063/1.1570935
86.
86.Z. Guo, S.-E. Lee, H. Kim, S. Park, H. Hahn, A. Karki, and D. Young, Acta Mater. 57, 267 (2009).
http://dx.doi.org/10.1016/j.actamat.2008.09.024
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/9/10.1063/1.4932381
Loading
/content/aip/journal/adva/5/9/10.1063/1.4932381
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/9/10.1063/1.4932381
2015-09-30
2016-12-05

Abstract

Manganese iron oxide (MnFeO) nanoparticles successfully served as nanofillers for obtaining magnetic epoxy nanocomposites. The viscosities of MnFeO/epoxy resin liquid suspensions increased with increasing the nanoparticles loading except the suspension with 5.0 and 1.0 wt% loading, whose viscosities were lower than that of pure epoxy. The introduction of MnFeO nanoparticles showed a lower onset decomposition temperature and glass transition temperature (), which decreased with increasing the nanoparticles loading. The storage modulus and tensile strength of 1.0 wt% MnFeO/epoxy were a little higher than that of pure epoxy. The coercivity of MnFeO/epoxy nanocomposites with 5.0 wt% (44.7 ) and 10.0 wt% (43.9 ) displayed much higher than that of pure MnFeO nanoparticles (14.94 ). The magnetic moment () of nanocomposites (1.354 for 10 wt% MnFeO/epoxy) are higher than that of pure MnFeO nanoparticles (1.244 ). The increased real permittivity observed in the nanocomposites was attributed to the interfacial polarization. The intrinsic permittivity of the MnFeO nanoparticles was also calculated.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/9/1.4932381.html;jsessionid=8diTcnzwp6JCiGKPTlbscQKK.x-aip-live-02?itemId=/content/aip/journal/adva/5/9/10.1063/1.4932381&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/9/10.1063/1.4932381&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/9/10.1063/1.4932381'
Right1,Right2,Right3,