Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, J. Am. Chem. Soc. 131, 6050 (2009).
2.J. H. Im, C. R. Lee, J. W. Lee, S. W. Park, and N. G. Park, Nanoscale 3, 4088 (2011).
3.H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. Humphry-Baker, J. H. Yum, J. E. Moser, M. Grätzel, and N. G. Park, Sci. Rep. 2, 591 (2012).
4.M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, Science 338, 643 (2012).
5.J. H. Heo, S. H. Im, J. H. Noh, T. N. Mandal, C. S. Lim, J. A. Chang, Y. H. Lee, H. J. Kim, A. Sarkar, M. K. Nazeeruddin, M. Grätzel, and S. I. Seok, Nat. Photonics 7, 487 (2013).
6.M. Liu, M. B. Johnston, and H. J. Snaith, Nature 501, 395 (2013).
7.H. Zhou, Q. Chen, G. Li, S. Luo, T.-B. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, and Y. Yang, Science 345, 542 (2014).
8.N. J. Jeon, J. H. Noh, W. S. Yang, Y. C. Kim, S. Ryu, J. Seo, and S. I. Seok, Nature 517, 476 (2015).
9.J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, Nano Letters 13, 1764 (2013).
10.N. Pellet, P. Gao, G. Gregori, T-Y. Yang, M. K. Nazeeruddin, J. Maier, and M. Grätzel, Angew. Chem. Int. Ed. 53, 3151 (2014).
11.Y. Ogomi, A. Morita, S. Tsukamoto, T. Saitho, N. Fujikawa, Q. Shen, T. Toyoda, K. Yoshino, S. S. Pandey, T. Ma, and S. Hayase, J. Phys. Chem. Lett. 5, 1004 (2014).
12.K. Tanaka, T. Takahashi, T. Ban, T. Kondo, K. Uchida, and N. Miura, Solid State Communications 127, 619 (2003).
13.S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, Science 342, 341 (2013).
14.G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, S. Mhaisalkar, and T. C. Sum, Science 342, 344 (2013).
15.W. A. Laban and L. Etgar, Energy Environ. Sci. 6, 3249 (2013).
16.J.-H. Im, I.-H. Jang, N. Pellet, M. Grätzel, and N.-G. Park, Nat. Nanotechnology 9, 927 (2014).
17.P. Gao, M. Gärtzela, and M. K. Nazeeruddin, Energy Environ. Sci. 7, 2448 (2014).
18.G. E. Eperon, V. M. Burlakov, P. Docampo, A. Goriely, and H. J. Snaith, Adv. Funct. Mater. 24, 151 (2014).
19.S. Pang, H. Hu, J. Zhang, S. Lv, Y. Yu, F. Wei, T. Qin, H. Xu, Z. Liu, and G. Cui, Chem. Mater. 26, 1485 (2014).
20.Q. Chen, H. Zhou, Z. Hong, S. Luo, H. S. Duan, H. H. Wang, Y. Liu, G. Li, and Y. Yang, J. Am. Chem. Soc. 136, 622 (2013).
21.A. H. Ip, L. N. Quan, M. M. Adachi, J. J. McDowell, J. Xu, D. H. Kim, and E. H. Sargent, Appl. Phys. Lett. 106, 143902 (2015).
22.S. R. Raga, M.-C. Jung, M. V. Lee, M. R. Leyden, Y. Kato, and Y. Qi, Chem. Mater. 27, 1597 (2015).
23.A. T. Barrows, A. J. Pearson, C. K. Kwak, A. D. F. Dunbar, A. R. Buckley, and D. G. Lidzey, Energy Environ. Sci. 7, 2944 (2014).
24.J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, Nature 499, 316 (2013).
25.D. Liu and T. L. Kelly, Nat. Photonics 8, 133 (2014).
26.B. Conings, L. Baeten, C. De Dobbelaere, J. D’Haen, J. Manca, and H.-G. Boyen, Adv. Mater. 26, 2041 (2014).
27.Mo. M. Tavakoli, H. Aashuri, A. Simchi, S. Kalytchuk, and Z. Fan, J. Phys. Chem. C 119, 18886 (2015).
28.B. R. Sutherland, S. Hoogland, M. M. Adachi, P. Kanjanaboos, C. T. O. Wong, J. J. McDowell, J. Xu, O. Voznyy, Z. Ning, A. J. Houtepen, and E. H. Sargent, Adv. Mater. 27, 53 (2015).
29.T. Salim, S. Sun, Y. Abe, A. Krishna, A. C. Grimsdale, and Y. M. Lam, J. Mater. Chem. A 3, 8943 (2015).
30.H. M. Christen and G. Eres, J. Phys.: Condens. Matter 20, 264005 (2008).
31.H. Koinuma and I. Takeuchi, Nature Materials 3, 429 (2004).
32.B. L. Zhu and X. Z. Zhao, Phys. Status Solidi A 208, 91 (2011).
33.U. Bansode, R. Naphade, O. Game, S. Agarkar, and S. Ogale, J. Phys. Chem. C 119, 9177 (2015).
34.M. Shkir, H. Abbas, Siddhartha, and Z. R. Khan, Journal of Physics and Chemistry of Solids 73, 1309 (2012).
35.D. Liu, M. K. Gangishetty, and T. L. Kelly, J. Mater. Chem. A 2, 19873 (2014).
36.W. Nie, H. Tsai, R. Asadpour, J.-C. Blancon, A. J. Neukirch, G. Gupta, J. J. Crochet, M. Chhowalla, S. Tretiak, M. A. Alam, H.-L. Wang, and A. D. Mohite, Science 30, 522 (2015).
37.Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, C. Wang, Y. Gao, and J. Huang, Energy Environ. Sci. 7, 2619 (2014).
38.J. Haruyama, K. Sodeyama, L. Han, and Y. Tateyama, J. Phys. Chem. Lett. 5, 2903 (2014).
39.K. M. Boopathi, M. Ramesh, P. Perumal, Y.-C. Huang, C.-S. Tsao, Y.-F. Chen, C.-H. Lee, and C.-W. Chu, J. Mater. Chem. A 3, 9257 (2015).
40.See supplementary material at for XRD patterns of the CH3NH3PbI3 films with varying thickness on FTO coated glasses in FIG S2.[Supplementary Material]

Data & Media loading...


Article metrics loading...



We report on fabrication of organic-inorganicperovskitethin films using a hybrid method consisting of pulsed laser deposition(PLD) of lead iodide and spin-coating of methylammonium iodide. Smooth and highly crystalline CHNHPbIthin films have been fabricated on silicon and glass coated substrates with fluorine doped tin oxide using this PLD-based hybrid method. Planar perovskite solar cells with an inverted structure have been successfully fabricated using the perovskitefilms. Because of its versatility, the PLD-based hybridfabrication method not only provides an easy and precise control of the thickness of the perovskitethin films, but also offers a straightforward platform for studying the potential feasibility in using other metal halides and organic salts for formation of the organic-inorganicperovskitestructure.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd