Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/1/10.1063/1.4939635
1.
1.B. B. Mandelbrot, The Fractal Geometry of Nature (Freeman, San Francisco, 1982).
2.
2.C. Puente, J. Romeu, R. Pous, and A. Cardama, in Fractals in Engineering, edited byJ. L. Vehel, E. Lutton, and C. Tricot (Springer, New York, 1997), See www.fractus.com for fractal antenna technology.
3.
3.C. Puente, J. Romeu, R. Bartolome, and R. Pous, Electron. Lett. 32, 12 (1996).
http://dx.doi.org/10.1049/el:19960033
4.
4.C. Puente, C. B. Borau, M. N. Rodero, and J. R. Robert, IEEE Trans. Antennas Propag 48, 713719 (2000).
http://dx.doi.org/10.1109/8.855489
5.
5.M. S. Fairbanks, D. N. McCarthy, S. A. Scoot, S. A. Brown, and R. P. Taylor, Nanotechnology 22 (2011).
http://dx.doi.org/10.1088/0957-4484/22/36/365304
6.
6.H. Samavati, A. Hajimiri, A. R. Shahani, G. N. Nasserbakht, and T. H. Lee, “Fractal capacitors,” Solid-State Circuits, IEEE Journal of 33, 20352041 (1998).
http://dx.doi.org/10.1109/4.735545
7.
7.P. Meakin, “Diffusion-controlled cluster formation in 26-dimensional space,” Phys. Rev. A 27, 14951507 (1983).
http://dx.doi.org/10.1103/PhysRevA.27.1495
8.
8.R. Batabyal, J. C. Mahato, D. Das, A. Roy, and B. N. Dev, “Self-organized one-atom thick fractal nanoclusters via field-induced atomic transport,” J. Appl. Phys. 114, 064304 (2013).
http://dx.doi.org/10.1063/1.4817520
9.
9.C. Amitrano, P. Meakin, and H. E. Stanley, “Fractal dimension of the accessible perimeter of diffusion-limited aggregation,” Phys. Rev. A 40, 17131716 (1989).
http://dx.doi.org/10.1103/PhysRevA.40.1713
10.
10.R. C. Ball, Nature(London) 309, 225 (1984).
http://dx.doi.org/10.1038/309225a0
11.
11.T. A. Witten and L. M. Sander, “Diffusion-limited aggregation, a kinetic critical phenomenon,” Phys. Rev. Lett. 47, 14001403 (1981).
http://dx.doi.org/10.1103/PhysRevLett.47.1400
12.
12.R. Q. Hwang, J. Schröder, C. Günther, and R. J. Behm, “Fractal growth of two-dimensional islands: Au on ru(0001),” Phys. Rev. Lett. 67, 32793282 (1991).
http://dx.doi.org/10.1103/PhysRevLett.67.3279
13.
13.T. Michely, M. Hohage, M. Bott, and G. Comsa, “Inversion of growth speed anisotropy in two dimensions,” Phys. Rev. Lett. 70, 39433946 (1993).
http://dx.doi.org/10.1103/PhysRevLett.70.3943
14.
14.Z. Zhang, X. Chen, and M. G. Lagally, “Bonding-geometry dependence of fractal growth on metal surfaces,” Phys. Rev. Lett. 73, 18291832 (1994).
http://dx.doi.org/10.1103/PhysRevLett.73.1829
15.
15.A. Brodde, G. Wilhelmi, D. Badt, H. Wengelnik, and H. Neddermeyer, “The growth of ag films on ni(100),” J. Vac. Sci. Technol. B 9, 920923 (1991).
http://dx.doi.org/10.1116/1.585495
16.
16.K. Sekar, G. Kuri, P. V. Satyam, B. Sundaravel, D. P. Mahapatra, and B. N. Dev, “Epitaxy driven fractal growth,” Solid State Commun. 96, 871875 (1995).
http://dx.doi.org/10.1016/0038-1098(95)80105-7
17.
17.H.-J. Ernst, F. M. C. Fabre, and J. Lapujoulade, “Nucleation and diffusion of cu adatoms on cu(100): A helium-atom-beam scattering study,” Phys. Rev. B 46, 19291932 (1992).
http://dx.doi.org/10.1103/PhysRevB.46.1929
18.
18.J. A. Stroscio, D. T. Pierce, and R. A. Dragoset, “Homoepitaxial growth of iron and a real space view of reflection-high-energy-electron diffraction,” Phys. Rev. Lett. 70, 36153618 (1993).
http://dx.doi.org/10.1103/PhysRevLett.70.3615
19.
19.D. D. Chambliss and R. J. Wilson, “Relaxed diffusion limited aggregation of ag on au(111) observed by scanning tunneling microscopy,” J. Vac. Sci. Technol. B 9, 928932 (1991).
http://dx.doi.org/10.1116/1.585497
20.
20.E. Kopatzki, S. Günther, W. Nichtl-Pecher, and R. J. Behm, “Homoepitaxial growth on ni(100) and its modification by a preadsorbed oxygen adlayer,” Surf. Sci. 284, 154166 (1993).
http://dx.doi.org/10.1016/0039-6028(93)90533-P
21.
21.B. Müller, L. Nedelmann, B. Fischer, H. Brune, and K. Kern, “Initial stages of cu epitaxy on ni(100): Postnucleation and a well-defined transition in critical island size,” Phys. Rev. B 54, 1785817865 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.17858
22.
22.B. Müller, L. Nedelmann, B. Fischer, H. Brune, J. V. Barth, and K. Kern, “Island shape transition in heteroepitaxial metal growth on square lattices,” Phys. Rev. Lett. 80, 26422645 (1998).
http://dx.doi.org/10.1103/PhysRevLett.80.2642
23.
23.D. W. Schaefer and K. D. Keefer, “Structure of random porous materials: Silica aerogel,” Phys. Rev. Lett. 56, 21992202 (1986).
http://dx.doi.org/10.1103/PhysRevLett.56.2199
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/1/10.1063/1.4939635
Loading
/content/aip/journal/adva/6/1/10.1063/1.4939635
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/1/10.1063/1.4939635
2016-01-20
2016-12-10

Abstract

We have investigated on-lattice diffusion limited aggregation (DLA) involving edge diffusion and compared the results with the standard DLA model. For both cases, we observe the existence of a crossover from the fractal to the compact regime as a function of sticking coefficient. However, our modified DLA model including edge diffusion shows an extended fractalgrowth regime like an earlier theoretical result using realistic growth models and physical parameters [Zhang , Phys. Rev. Lett. 73 (1994) 1829]. While the results of Zhang showed the existence of the extended fractalgrowth regime only on triangular but not on square lattices, we find its existence on the square lattice. There is experimental evidence of this growth regime on a square lattice. The standard DLA model cannot characterize fractal morphology as the fractal dimension (Hausdorff dimension, ) is insensitive to morphology. It also predicts = (the perimeter dimension). For the usual fractalstructures, observed in growth experiments on surfaces, the perimeter dimension can differ significantly () depending on the morphology. Our modified DLA model shows minor sensitivity to this difference.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/1/1.4939635.html;jsessionid=gQLeiJto-jSjyyzZhWqnnwEy.x-aip-live-06?itemId=/content/aip/journal/adva/6/1/10.1063/1.4939635&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/1/10.1063/1.4939635&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/1/10.1063/1.4939635'
Right1,Right2,Right3,