Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/1/10.1063/1.4939696
1.
1.N. Nagaosa, Rev. Mod. Phys. 82, 1539 (2010).
http://dx.doi.org/10.1103/RevModPhys.82.1539
2.
2.P. He, L. Ma, Z. Shi, G. Y. Guo, J.-G. Zheng, Y. Xin, and S. M. Zhou, Phys. Rev. Lett. 109, 066402 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.066402
3.
3.P. He, X. Ma, J. W. Zhang, H. B. Zhao, G. Lpke, Z. Shi, and S. M. Zhou, Phys. Rev. Lett. 110, 077203 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.077203
4.
4.R. Wu and A.J. Freeman, J Magn. Magn. Mater. 200, 498 (1999).
http://dx.doi.org/10.1016/S0304-8853(99)00351-0
5.
5.Y. Yao, L. Kleinman, A. H. MacDonald, J. Sinova, T. Jungwirth, D. Wang, E. Wang, and Q. Niu, Phys. Rev. Lett. 92, 037204 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.037204
6.
6.E. Vilanova Vidal, H. Schneider, and G. Jakob, Phys. Rev. B 83, 174410 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.174410
7.
7.H. Pandey and R.C. Budhani, J. Appl. Phys. 113, 203918 (2013).
http://dx.doi.org/10.1063/1.4808098
8.
8.L. F. Yin, D. H. Wei, N. Lei, L. H. Zhou, C. S. Tian, G. S. Dong, X. F. Jin, L. P. Guo, Q. J. Jia, and R. Q. Wu, Phys. Rev. Lett. 97, 067203 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.067203
9.
9.A. W. Smith and R. W. Sears, Phys. Rev. 34, 1466 (1929).
http://dx.doi.org/10.1103/PhysRev.34.1466
10.
10.R. Karplus and J. M. Luttinger, Phys. Rev. 95, 1154 (1954).
http://dx.doi.org/10.1103/PhysRev.95.1154
11.
11.J. Smit, Physica 24, 39 (1958).
http://dx.doi.org/10.1016/S0031-8914(58)93541-9
12.
12.L. Berger, Phys. Rev. B 2, 4559 (1970).
http://dx.doi.org/10.1103/PhysRevB.2.4559
13.
13.I. Turek, J. Kudrnovský, and V. Drchal, Phys. Rev. B. 86, 014405 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.014405
14.
14.S. M. Rezende, J. A. S. Moura, F. M. de Aguiar, and W. H. Schreiner, Phys. Rev. B 49, 15105 (1994).
http://dx.doi.org/10.1103/PhysRevB.49.15105
15.
15.J. Ye, W. He, Q. Wu, H.-L. Liu, X.-Q. Zhang, Z.-Y. Chen, and Z.-H. Cheng, Scientific Reports 3, 2148 (2013).
16.
16.G. Aubert, J. Appl. Phys. 39, 504 (1968).
http://dx.doi.org/10.1063/1.2163505
17.
17.H. Miyajima, K. Sato, and T. Mizoguchi, J. Appl. Phys. 47, 4669 (1976).
http://dx.doi.org/10.1063/1.322398
18.
18.A. Barthelemy, A. Fert, J.-P. Contour, M. Bowen, V. Cros, J.M. De Teresa, A. Hamzic, J.C. Faini, J.M. George, J. Grollier, F. Montaigne, F. Pailloux, F. Petroff, and C. Vouille, J. Magn. Magn. Mater. 68, 242 (2002).
19.
19.G. G. E. Low and M.F. Collins, J. Appl. Phys. 34, 1195 (1963).
http://dx.doi.org/10.1063/1.1729431
20.
20.R. M. Bozorth, Ferromagnetism (IEEE Press and Wiley, Hoboken, NJ, 2003).
21.
21.T. R. McGuire and R. I. Potter, IEEE Tran. Magn. 11, 1018 (1975).
http://dx.doi.org/10.1109/TMAG.1975.1058782
22.
22.Z. Q. Lu, G. Pan, and W. Y. Lai, J Appl. Phys. 90, 1414 (2001).
http://dx.doi.org/10.1063/1.1380993
23.
23.T. Q. Hung, S. Oh, B. Sinha, J-R. Jeong, D-Y Kim, and C. Kim, J Appl. Phys. 107, 09E715 (2010).
http://dx.doi.org/10.1063/1.3337739
24.
24.X. Xiao, J. H. Liang, B. L. Chen, J. X. Li, D. H. Ma, Z. Ding, and Y. Z. Wu, J. Appl. Phys. 118, 043908 (2015).
http://dx.doi.org/10.1063/1.4927620
25.
25.J. Smit, Physica 21, 877 (1955).
http://dx.doi.org/10.1016/S0031-8914(55)92596-9
26.
26.Y. Q. Zhang, N. Y. Sun, R. Shan, J. W. Zhang, S. M. Zhou, Z. Shi, and G. Y. Guo, J. Appl. Phys. 114, 163714 (2013).
http://dx.doi.org/10.1063/1.4827198
27.
27.L. Ye, Y. Tian, X. Jin, and D. Xiao, Phys. Rev. B 85, 220403 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.220403
28.
28.H. R. Fuh and G. Y. Guo, Phys. Rev. B 84, 144427 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.144427
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/1/10.1063/1.4939696
Loading
/content/aip/journal/adva/6/1/10.1063/1.4939696
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/1/10.1063/1.4939696
2016-01-05
2016-09-28

Abstract

The anomalous Hall effect (AHE) and magneto-crystalline anisotropy (MCA) are investigated in epitaxialNiFethin filmsgrown on MgO (001) substrates. The scattering independent term of anomalous Hall conductivity shows obvious correlation with cubic magneto-crystalline anisotropy. When nickel content decreasing, both and vary continuously from negative to positive, changing sign at about = 0.85. calculations indicate NiFe has more abundant band structures than pure Ni due to the tuning of valence electrons (band fillings), resulting in the increased and . This remarkable correlation between and can be attributed to the effect of band filling near the Fermi surface.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/1/1.4939696.html;jsessionid=HnTihShX9r6-0C7dZPtN2j9s.x-aip-live-06?itemId=/content/aip/journal/adva/6/1/10.1063/1.4939696&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/1/10.1063/1.4939696&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/1/10.1063/1.4939696'
Right1,Right2,Right3,