Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/1/10.1063/1.4939697
1.
1.R. L. White, J. Appl. Phys. 40, 1061 (1969).
http://dx.doi.org/10.1063/1.1657530
2.
2.A. V. Kimel, A. Kirilyuk, A. Tsvetkov, R. V. Pisarev, and T. Rasing, Nature (London) 429, 850 (2004).
http://dx.doi.org/10.1038/nature02659
3.
3.J. A. de Jong, A. V. Kimel, R. V. Pisarev, A. Kirilyuk, and Th. Rasing, Phys. Rev. B 84, 104421 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.104421
4.
4.R. V. Mikhaylovskiy, E. Hendry, V. V. Kruglyak, R. V. Pisarev, Th. Rasing, and A. V. Kimel, Phys. Rev. B 90, 184405 (2014).
http://dx.doi.org/10.1103/PhysRevB.90.184405
5.
5.K. Yamaguchi, M. Nakajima, and T. Suemoto, Phys. Rev. Lett. 105, 237201 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.237201
6.
6.Y. Tokunaga, S. Iguchi, T. Arima, and Y. Tokura, Phys. Rev. Lett. 101, 097205 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.097205
7.
7.Y. Tokunaga, N. Furukawa, H. Sakai, Y. Taguchi, T. Arima, and Y. Tokura, Nat. Mater. 8, 558 (2009).
http://dx.doi.org/10.1038/nmat2469
8.
8.Y. Tokunaga, Y. Taguchi, T. Arima, and Y. Tokura, Phys. Rev. Lett. 112, 037203 (2014).
http://dx.doi.org/10.1103/PhysRevLett.112.037203
9.
9.I. Dzyaloshinskii, J. Phys. Chem. Solids 4, 241 (1958).
http://dx.doi.org/10.1016/0022-3697(58)90076-3
10.
10.T. Moriya, Phys. Rev. 120, 91 (1960).
http://dx.doi.org/10.1103/PhysRev.120.91
11.
11.S. Yuan, W. Ren, F. Hong, Y. Wang, J. Zhang, L. Bellaiche, S. Cao, and G. Gao, Phys. Rev. B 87, 184405 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.184405
12.
12.H. Shen, Z. Cheng, F. Hong, J. Xu, S. Yuan, S. Cao, and X. Wang, Appl. Phys. Lett. 103, 192404 (2013).
http://dx.doi.org/10.1063/1.4829468
13.
13.L. T. Tsymbal, Ya. B. Bazaliy, V. N. Derkachenko, V. I. Kamenev, G. N. Kakazei, F. J. Palomares, and P. E. Wigen, J. Appl. Phys. 101, 123919 (2007).
http://dx.doi.org/10.1063/1.2749404
14.
14.S. Yuan, Y. Cao, L. Li, T. Qi, S. Cao, J. Zhang, L. DeLong, and G. Cao, J. Appl. Phys. 114, 113909 (2013).
http://dx.doi.org/10.1063/1.4821516
15.
15.S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, Science 294, 1488 (2001).
http://dx.doi.org/10.1126/science.1065389
16.
16.I. Zutic, J. Fabian, and S. Das Sarma, Rev. Mod. Phys. 76, 323 (2004).
http://dx.doi.org/10.1103/RevModPhys.76.323
17.
17.T. Kampfrath, A. Sell, G. Klatt, A. Pashkin, S. Mahrlein, T. Dekorsy, M. Wolf, M. Fiebig, A. Leitenstorfer, and R. Huber, Nat. Photonics 5, 31 (2011).
http://dx.doi.org/10.1038/nphoton.2010.259
18.
18.S. Wienholdt, D. Hinzke, and U. Nowak, Phys. Rev. Lett. 108, 247207 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.247207
19.
19.H. Horner and C.M. Varma, Phys. Rev. Lett. 20, 845 (1968).
http://dx.doi.org/10.1103/PhysRevLett.20.845
20.
20.B. Wang, X. Zhao, A. Wu, S. Cao, J. Xu, A. M. Kalashnikova, and R. V. Pisarev, J. Magn. Magn. Mater. 379, 192 (2015).
http://dx.doi.org/10.1016/j.jmmm.2014.12.030
21.
21.W. Zhao, S. Cao, R. Huang, Y. Cao, K. Xu, B. Kang, J. Zhang, and W. Ren, Phys. Rev. B 91, 104425 (2015).
http://dx.doi.org/10.1103/PhysRevB.91.104425
22.
22.J.-H. Lee, Y. K. Jeong, J. H. Park, M. A. Oak, H. M. Jang, J. Y. Son, and J. F. Scott, Phys. Rev. Lett. 107, 117201 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.117201
23.
23.J. Jiang, Z. Jin, G. Song, X. Lin, G. Ma, and S. Cao, Appl. Phys. Lett. 103, 062403 (2013).
http://dx.doi.org/10.1063/1.4818135
24.
24.X. Lin, J. Jiang, Z. Jin, D. Wang, Z. Tian, J. Han, Z. Cheng, and G. Ma, Appl. Phys. Lett. 106, 092403 (2015).
http://dx.doi.org/10.1063/1.4913998
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/1/10.1063/1.4939697
Loading
/content/aip/journal/adva/6/1/10.1063/1.4939697
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/1/10.1063/1.4939697
2016-01-05
2016-12-10

Abstract

Single crystal of SmTbFeO was grown by an optical floating zone method. The spin reorientation transition behavior (Γ → Γ → Γ) is observed in the temperature range from 150 to 250 K. The dynamics of spin reorientation transition is studied by terahertz time-domain spectroscopy(THz-TDS).FM mode was only discovered when temperature is below 55 K. And the FM mode resonant frequency increases from 0.216 THz to 0.268 THz with temperature deceasing from 55 K to 39 K. The AFM mode resonant frequency is fixed at 0.542 THz except in the very low temperature range. Our results demonstrate that THz-TDS is an effective means to study the dynamical ironions SRT in RFeO.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/1/1.4939697.html;jsessionid=fIh3N5zZJlckylcbdhn6v149.x-aip-live-03?itemId=/content/aip/journal/adva/6/1/10.1063/1.4939697&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/1/10.1063/1.4939697&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/1/10.1063/1.4939697'
Right1,Right2,Right3,