Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/1/10.1063/1.4939813
1.
1.E. Wigner, Phys. Rev. 40, 749 (1932).
http://dx.doi.org/10.1103/PhysRev.40.749
2.
2.Ulf Leonhardt, Measuring the Quantum State of Light (Cambridge University Press, Cambridge, 2005).
3.
3.D. Leibfried, D. M. Meekhof, B. E. King, C. Monroe, W. M. Itano, and D. J. Wineland, Phys. Rev. Lett. 77, 4281 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.4281
4.
4.K. Husimi, Proc. Phys. Math. Soc. Jpn. 22, 264 (1940).
5.
5.R. J. Glauber, Phys. Rev. Lett. 10, 84 (1963).
http://dx.doi.org/10.1103/PhysRevLett.10.84
6.
6.Werner Vogel and Dirk-Gunnar Welsch, Quantum Optics, Third Revised and Extended Edition (WILEY-VCH Verlag, Weinheim, 2006).
7.
7.H. Moya-Cessa, J.A. Roversi, S.M. Dutra, and A. Vidiella-Barranco, Phys. Rev. A 60, 4029 (1999).
http://dx.doi.org/10.1103/PhysRevA.60.4029
8.
8.H. Moya-Cessa, S.M. Dutra, J.A. Roversi, and A. Vidiella-Barranco, J. of Mod. Opt. 46, 555 (1999).
http://dx.doi.org/10.1080/09500349908231283
9.
9.J. Moyal, Proc. Cambridge Philos. Soc. 45, 99 (1949).
http://dx.doi.org/10.1017/S0305004100000487
10.
10.F. Bopp, “Statistische Mechanik bei Störung des Zustands eines physikalischen Systems durch die Beobachtung,” in Werner Heisenberg und die Physik unserer Zeit, edited byF. Bopp (Braunschweig, Vieweg, 1961).
11.
11.Go. Torres-Vega and John H. Frederick, J. Chem. Phys. 98, 3103 (1993).
http://dx.doi.org/10.1063/1.464085
12.
12.K. B. Møller, T. G. Jørgensen, and Go. Torres-Vega, J. Chem. Phys. 106, 7228 (1997).
http://dx.doi.org/10.1063/1.473684
13.
13.Li-yun Hu, Hong-yi Fan, and Hai-liang Lu, J. Chem. Phys. 128, 054101 (2008).
http://dx.doi.org/10.1063/1.2827480
14.
14.Li-yun Hu and Hong-yi Fan, Int. J. Theor. Phys. 48, 1539 (2009).
http://dx.doi.org/10.1007/s10773-009-0008-z
15.
15.I. Daubechies, Ten Lectures on Wavelets (SIAM, Philadelphia, 1992).
16.
16.G. S. Agarwal and E. Wolf, Phys. Rev. D 2, 2161 (1970);
http://dx.doi.org/10.1103/PhysRevD.2.2161
16.G. S. Agarwal and E. Wolf, Phys. Rev. D2, 2187 (1970);
16.G. S. Agarwal and E. Wolf, Phys. Rev. D2, 2206 (1970).
17.
17.K. B. Møller, T. G. Jørgensen, and J. P. Dahl, Phys. Rev. A 54, 5378 (1996).
http://dx.doi.org/10.1103/PhysRevA.54.5378
18.
18. Note that unitary transformations of the form T = exp[i(α0qp + β0pqpp)] may be realized to simplify this equation.19
19.
19.J. D. Morales-Guzmán, J. Morales, and J. J. Peña, Int. J. Quantum Chem. 85, 239 (2001).
http://dx.doi.org/10.1002/qua.1521
20.
20.Wolfgang P. Schleich, Quantum Optics in Phase Space (WILEY-VCH Verlag, Weinheim, 2001).
21.
21.Qian Shu Li, Gong Min Wei, and Li Qiang , Phys. Rev. A 70, 022105 (2004).
http://dx.doi.org/10.1103/PhysRevA.70.022105
22.
22.S. T. Ali, N. M. Atakishiyev, S. M. Chumakov, and K. B. Wolf, Ann. Inst. Henri Poincaré 1, 685 (2000);
http://dx.doi.org/10.1007/PL00001012
22.S. T. Ali, A. E. Krasowska, and R. Murenzi, J. Opt. Soc. Am. A 17, 2277 (2000).
http://dx.doi.org/10.1364/JOSAA.17.002277
23.
23.A. E. Krasowska and S. T. Ali, J. Phys. A: Math. Gen. 36, 2801 (2003).
http://dx.doi.org/10.1088/0305-4470/36/11/311
24.
24.Dariusz Chruściński and Krzysztof Młodawski, Phys. Rev. A 71, 052104 (2005).
http://dx.doi.org/10.1103/PhysRevA.71.052104
25.
25.M. Abdel-Atya, G.M. Abd Al-Kaderb, and A.-S.F. Obadab, Chaos, Solitons & Fractals 12, 2455 (2001).
http://dx.doi.org/10.1016/S0960-0779(00)00215-0
26.
26.H. Groenewold, Physica 12, 405 (1946);
http://dx.doi.org/10.1016/S0031-8914(46)80059-4
26.J. Moyal, Proc. Cambridge Philos. Soc. 45, 99 (1949).
http://dx.doi.org/10.1017/S0305004100000487
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/1/10.1063/1.4939813
Loading
/content/aip/journal/adva/6/1/10.1063/1.4939813
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/1/10.1063/1.4939813
2016-01-11
2016-12-08

Abstract

An explicit phase space representation of the wave function is build based on a wavelet transformation. The wavelet transformation allows us to understand the relationship between − ordered Wigner function, (or Wigner function when = 0), and the Torres-Vega-Frederick’s wave functions. This relationship is necessary to find a general solution of the Schrödinger equation in phase-space.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/1/1.4939813.html;jsessionid=1_mlaHVoRddPy1mDvwJO8ULM.x-aip-live-02?itemId=/content/aip/journal/adva/6/1/10.1063/1.4939813&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/1/10.1063/1.4939813&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/1/10.1063/1.4939813'
Right1,Right2,Right3,