Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.J. C. Fernandez, B. J. Albright, F. N. Beg, M. E. Foord, B. M. Hegelich, J. J. Honrubia, M. Roth, R. B. Stephens, and L. Yin, Nucl. Fusion 54, 054006 (2014).
2.J. Bin, K. Allinger, W. Assmann, G. Dollinger, G. A. Drexler, A. A. Friedl, D. Habs, P. Hilz, R. Hoerlein, N. Humble, S. Karsch, K. Khrennikov, D. Kiefer, F. Krausz, W. Ma, D. Michalski, M. Molls, S. Raith, S. Reinhardt, B. Roper, T. E. Schmid, T. Tajima, J. Wenz, O. Zlobinskaya, J. Schreiber, and J. J. Wilkens, Appl. Phys. Lett. 101, 243701 (2012).
3.F. Abicht, J. Braenzel, G. Priebe, Ch. Koschitzki, A. A. Andreev, P. V. Nickles, W. Sandner, and M. Schnurer, Appl. Phys. Lett. 105, 034101 (2014).
4.M. Borghesi, J. Fuchs, S. V. Bulanov, A. J. MacKinnon, P. K. Patel, and M. Roth, Fusion Sci. Technol. 49, 412 (2006).
5.A. P. L. Robinson, M. Zepf, S. Kar, R. G. Evans, and C. Bellei, New Journal of Physics 10, 013021 (2008).
6.B. Qiao, M. Zepf, M. Borghesi, and M. Geissler, Phys. Rev. Lett. 102, 145002 (2009).
7.H. Schwoerer, S. Pfotenhauer, O. Jackel, K.-U. Amthor, B. Liesfeld, W. Ziegler, R. Sauerbrey, K. W. D. Ledingham, and T. Esirkepov, Nature 439, 445 (2006).
8.A. Macchi, M. Borghesi, and M. Passoni, Rev. Mod. Phys. 85, 751 (2013).
9.H. Daido, M. Nishiuchi, and A. S. Pirozhkov, Rep. Prog. Phys. 75, 056401 (2012).
10.S. C. Wilks, A. B. Langdon, T. E. Cowan, M. Roth, M. Singh, S. Hatchett, M. H. Key, D. Pennington, A. MacKinnon, and R. A. Snavely, Phys. Plasmas 8, 542 (2001).
11.M. Borghesi, A. Mackinnon, D. Campbell, D. Hicks, S. Kar, P. K. Patel, D. Price, L. Romagnani, A. Schiavi, and O. Willi, Phys. Rev. Lett. 92, 055003 (2004).
12.M. Passoni, L. Bertagna, and A. Zani, New J. Phys. 12, 045012 (2010).
13.C. T. Zhou and X. T. He, Appl. Phys. Lett. 90, 031503 (2007).
14.F. L. Zheng, S. Z. Wu, H. Zhang, T. W. Huang, M. Y. Yu, C. T. Zhou, and X. T. He, Phys. Plasmas 20, 123105 (2013).
15.K. D. Xiao, C. T. Zhou, B. Qiao, and X. T. He, Phys. Plasmas 22, 093112 (2015).
16.S. A. Gaillard, T. Kluge, K. A. Flippo, M. Bussmann, B. Gall, T. Lockard, M. Geissel, D.T. Offermann, M. Schollmeier, Y. Sentoku, and T.E. Cowan, Phys. Plasmas 18, 056710 (2011).
17.R. A. Snavely, M. H. Key, S. P. Hatchett, T. E. Cowan, M. Roth, T. W. Phillips, M. A. Stoyer, E. A. Henry, T. C. Sangster, M. S. Singh, S. C. Wilks, A. MacKinnon, A. Offenberger, D. M. Pennington, K. Yasuike, A. B. Langdon, B. F. Lasinski, J. Johnson, M. D. Perry, and E. M. Campbell, Phys. Rev. Lett. 85, 2945 (2000).
18.M. Borghesi, Nucl. Instruments Methods Phys. Res. A 740, 6 (2014).
19.A. Macchi, A. Sgattoni, S. Sinigardi, M. Borghesi, and M. Passoni, Plasma Phys. Control. Fusion 56, 039501 (2014).
20.Y. Sentoku, K. Mima, H. Ruhl, Y. Toyama, R. Kodama, and T. E. Cowan, Phys. Plasmas 11, 6 (2004).
21.J. Rassuchine, E. d’Humieres, S. D. Baton, P. Guillou, M. Koenig, M. Chahid, F. Perez, J. Fuchs, P. Audebert, R. Kodama, M. Nakatsutsumi, N. Ozaki, D. Batani, A. Morace, R. Redaelli, L. Gremillet, C. Rousseaux, F. Dorchies, C. Fourment, J. J. Santos, J. Adams, G. Korgan, S. Malekos, S. B. Hansen, R. Shepherd, K. Flippo, S. Gaillard, Y. Sentoku, and T. E. Cowan, Phys. Rev. E 79, 036408 (2009).
22.T. Kluge, S. A. Gaillard, K. A. Flippo, T. Burris-Mog, W. Eng- hardt, B. Gall, M. Geissel, A. Helm, S.D. Kraft, T. Lockard, J. Metzkes, D.T. Offermann, M. Schollmeier, U. Schramm, K. Zeil, M. Bussmann, and T.E. Cowan, New J. Phys. 14, 023038 (2012).
23.X. H. Yang, H. Xu, Y. Y. Ma, F. Q. Shao, Y. Yin, H. B. Zhuo, M. Y. Yu, and C. L. Tian, Phys. Plasmas 18, 023109 (2011).
24.M. Murakami and M. Tanaka, Appl. Phys. Lett. 102, 163101 (2013).
25.G. G. Scott, J. S. Green, V. Bagnoud, C. Brabetz, C. M. Brenner, D. C. Carroll, D. A. MacLellan, A. P. L. Robinson, M. Roth, C. Spindloe, F. Wagner, B. Zielbauer, P. McKenna, and D. Neely, Appl. Phys. Lett. 101, 024101 (2012).
26.C. T. Zhou, L. Y. Chew, and X. T. He, Appl. Phys. Lett. 97, 051502 (2010).
27.C. T. Zhou, X. G. Wang, S. Z. Wu, H. B. Cai, and X. T. He, Appl. Phys. Lett. 97, 201502 (2010).
28.K. H. Pae, I. W. Choi, S. J. Hahn, J. R. Cary, and J. Lee, Phys. Plasmas 16, 073106 (2009).
29.T. Nakamura, K. Mima, H. Sakagami, and T. Johzki, Phys. Plasmas 14, 053112 (2007).
30.K. V. Lotov, K. V. Gubin, V. E. Leshchenko, V. I. Trunov, and E. V. Pestryakov, Phys. Plasmas 22, 103111 (2015).
31.L. L. Ji, J. Snyder, A. Pukhov, R. R. Freeman, and K. U. Akli, arXiv:1509.07018v1 (2015).
32.J. Yu, W. Zhou, L. Cao, Z. Zhao, L. Cao, L. Shan, D. Liu, X. Jin, B. Li, and Y. Gu, Appl. Phys. Lett. 100, 204101 (2012).
33.S. Jiang, A. G. Krygier, D.W. Schumacher, K.U. Akli, and R.R. Freeman, Phys. Rev. E 89, 013106 (2014).
34.Z. M. Zhang, X. T. He, Z. M. Sheng, and M. Y. Yu, Appl. Phys. Lett. 100, 134103 (2012).
35.J. Fischer and M. Wegener, Laser Photonics Rev. 7(No. 1), 2244 (2013).
36.A. V. Arefiev, G. E. Cochran, D. W. Schumacher, A. P. L. Robinson, and G. Chen, Phys. Plasmas 22, 013103 (2015).
37.L. Hu, T. Yu, F. Shao, D. Zou, and Y. Yin, Phys. Plasmas 22, 033104 (2015).
38.J. B. Driscoll, X. Liu, S. Yasseri, I. Hsieh, J. I. Dadap, and R. M. Osgood, Opt. Exp. 17, 2797 (2009).
39.B. Cros, C. Courtois, G. Matthieussent, A. Di Bernardo, D. Batani, N. Andreev, and S. Kuznetsov, Phys. Rev. E 65, 026405 (2002).
40.J. R. Davies and J. T. Mendonca, Phys. Rev. E 66, 046604 (2002).
41.A. Pukhov, Rep. Prog. Phys. 65, R1-R55 (2002).
42.C. T. Zhou and X. T. He, Phys. Scr. 50, 415 (1994).
43.K. Q. Pan, C. Y. Zheng, D. Wu, L. H. Cao, Z. J. Liu, and X. T. He, Appl. Phys. Lett. 107, 183902 (2015).
44.Y. T. Li, X. H. Yuan, M. H. Xu, Z. Y. Zheng, Z. M. Sheng, M. Chen, Y. Y. Ma, W. X. Liang, Q. Z. Yu, Y. Zhang, F. Liu, Z. H. Wang, Z. Y. Wei, W. Zhao, Z. Jin, and J. Zhang, Phys. Rev. Lett. 96, 165003 (2006).
45.P. Mora, Phys. Rev. Lett. 90, 185002 (2003).
46.J. Fuchs, P. Antici, E. DHumieress, E. Lefebvre, M. Borghesi, E. Brambrink, C. A. Cecchetti, M. Kaluza, V. Malka, M. Manclossi, S. Meyroneinc, P. Mora, J. Schreiber, T. Toncian, H. Pepin, and P. Audebert, Nature Physics 2, 48 (2005).
47.A. Sgattoni, P. Londrillo, A. Macchi, and M. Passoni, Phys. Rev. E 85, 036405 (2012).
48.A. Flacco, F. Sylla, M. Veltcheva, M. Carri, R. Nuter, E. Lefebvre, D. Batani, and V. Malka, Phys. Rev. E 81, 036405 (2010).
49.E. d’Humières, A. Brantov, V. Yu. Bychenkov, and V. T. Tikhonchuk, Phys. Plasmas 20, 023103 (2013).

Data & Media loading...


Article metrics loading...



Laser driven proton acceleration is proposed to be greatly enhanced by using a cone-tube target, which can be easily manufactured by current 3D-print technology. It is observed that energetic electron bunches are generated along the tube and accelerated to a much higher temperature by the combination of ponderomotive force and longitudinal electric field which is induced by the optical confinement of the laser field. As a result, a localized and enhanced sheath field is produced at the rear of the target and the maximum protonenergy is about three-fold increased based on the two-dimentional particle-in-cell simulation results. It is demonstrated that by employing this advanced target scheme, the scaling of the protonenergy versus the laser intensity is much beyond the normal target normal sheath acceleration (TNSA) case.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd