Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.G. Sun, R. A. Soref, and H. H. Cheng, J. Appl. Phys. 108, 033107 (2010).
2.V. R. D’Costa, W. Wang, Q. Zhou, T. K. Chan, T. Osipowicz, E. S. Tok, and Y.-C. Yeo, J. Appl. Phys. 116, 053520 (2014).
3.I. S. Yu, T. H. Wu, K. Y. Wu, H. H. Cheng, V. I. Mashanov, A. I. Nikiforov, O. P. Pchelyakov, and X. S. Wu, AIP Advances 1, 042118 (2011).
4.R. R. Lieten, J. W. Seo, S. Decoster, A. Vantomme, S. Peters, K. C. Bustillo, E. E. Haller, M. Menghini, and J.-P. Locquet, Appl. Phys. Lett. 102, 052106 (2013).
5.S. Wirths, Z. Ikonic, A. T. Tiedemann, B. Holländer, T. Stoica, G. Mussler, U. Breuer, J. M. Hartmann, A. Benedetti, S. Chiussi, D. Grützmacher, S. Mantl, and D. Buca, Appl. Phys. Lett. 103, 192110 (2013).
6.J. Mathews, R. Roucka, J. Xie, S.-Q. Yu, J. Menéndez, and J. Kouvetakis, Appl. Phys. Lett. 95, 133506 (2009).
7.J. D. Sau and M. L. Cohen, Phys. Rev. B 75, 045208 (2007).
8.S. Gupta, R. Chen, B. Magyari-Köpe, H. Lin, B. Yang, A. Nainani, Y. Nishi, J. S. Harris, and K. C. Saraswat, in IEEE International Electron Devices Meeting (IEDM) Technical Digest (IEEE, 2011), p. 398.
9.D. Haehnel, I. A. Fischer, A. Hornung, A.-C. Koellner, and J. Schulze, IEEE Trans. Electron Devices 62, 36 (2015).
10.W. Y. Choi, B.-G. Park, J. D. Lee, and T.-J. K. Liu, IEEE Electron Device Lett. 28, 743 (2007).
11.Y. Yang, S. Su, P. Guo, W. Wang, X. Gong, L. Wang, K. L. Low, G. Zhang, C. Xue, B. Cheng, G. Han, and Y.-C. Yeo, in IEEE International Electron Devices Meeting (IEDM) Technical Digest (IEEE, 2012), p. 379.
12.H. Pérez Ladrón de Guevara, A. G. Rodríguez, H. Navarro-Contreras, and M. A. Vidal, Appl. Phys. Lett. 84, 4532 (2004).
13.V. R. D’Costa, C. S. Cook, A. G. Birdwell, C. L. Littler, M. Canonico, S. Zollner, J. Kouvetakis, and J. Menéndez, Phys. Rev. B 73, 125207 (2006).
14.R. Chen, H. Lin, Y. Huo, C. Hitzman, T. I. Kamins, and J. S. Harris, Appl. Phys. Lett. 99, 181125 (2011).
15.W.-J. Yin, X.-G. Gong, and S.-H. Wei, Phys. Rev. B 78, 161203 (2008).
16.S. Gupta, B. Magyari-Köpe, Y. Nishi, and K. C. Saraswat, J. Appl. Phys. 113, 073707 (2013).
17.A. A. Tonkikh, C. Eisenschmidt, V. G. Talalaev, N. D. Zakharov, J. Schilling, G. Schmidt, and P. Werner, Appl. Phys. Lett. 103, 032106 (2013).
18.R. R. Lieten, T. Maeda, W. Jevasuwan, H. Hattori, N. Uchida, S. Miura, M. Tanaka, and J.-P. Locquet, Appl. Phys. Express 6, 101301 (2013).
19.X. Gong, G. Han, F. Bai, S. Su, P. Guo, Y. Yang, R. Cheng, D. Zhang, G. Zhang, C. Xue, B. Cheng, J. Pan, Z. Zhang, E. S. Tok, D. Antoniadis, and Y.-C. Yeo, IEEE Electron Device Lett. 34, 339 (2013).
20.P. Guo, G. Han, X. Gong, B. Liu, Y. Yang, W. Wang, Q. Zhou, J. Pan, Z. Zhang, E. S. Tok, and Y.-C. Yeo, J. Appl. Phys. 114, 044510 (2013).
21.Y. Yang, K. L. Low, W. Wang, P. Guo, L. Wang, G. Han, and Y.-C. Yeo, J. Appl. Phys. 113, 194507 (2013).
22.M. Oehme, D. Buca, K. Kostecki, S. Wirths, B. Holländer, E. Kasper, and J. Schulze, J. Cryst. Growth 384, 71 (2013).
23.R. Chen, Y.-C. Huang, S. Gupta, A. C. Lin, E. Sanchez, Y. Kim, K. C. Saraswat, T. I. Kamins, and J. S. Harris, J. Cryst. Growth 365, 29 (2013).
24.B. Vincent, F. Gencarelli, H. Bender, C. Merckling, B. Douhard, D. H. Petersen, O. Hansen, H. H. Henrichsen, J. Meersschaut, W. Vandervorst, M. Heyns, R. Loo, and M. Caymax, Appl. Phys. Lett. 99, 152103 (2011).
25.T. Asano, Y. Shimura, O. Nakatsuka, and S. Zaima, Thin Solid Films 531, 504 (2013).
26.Y. Liu, J. Yan, H. Wang, Q. Zhang, M. Liu, B. Zhao, C. Zhang, B. Cheng, Y. Hao, and G. Han, IEEE Trans. Electron Devices 61, 3639 (2014).
27.L. Liu, R. Liang, J. Wang, and J. Xu, J. Appl. Phys. 117, 184501 (2015).
28.X. Gong, G. Han, S. Su, R. Cheng, P. Guo, F. Bai, Y. Yang, Q. Zhou, B. Liu, K. H. Goh, G. Zhang, C. Xue, B. Cheng, and Y.-C. Yeo, Symposium on VLSI Technology (IEEE, 2013), p. 34.
29.K. L. Low, Y. Yang, G. Han, W. Fan, and Y.-C. Yeo, J. Appl. Phys. 112, 103715 (2012).
30.M. V. Fischetti and S. E. Laux, J. Appl. Phys. 80, 2234 (1996).
31.J. Kim and M. V. Fischetti, J. Appl. Phys. 108, 013710 (2010).
32.S. Sant, S. Lodha, U. Ganguly, S. Mahapatra, F. O. Heinz, L. Smith, V. Moroz, and S. Ganguly, J. Appl. Phys. 113, 033708 (2013).
33.K.-H. Kao, A. S. Verhulst, M. Van de Put, W. G. Vandenberghe, B. Soree, W. Magnus, and K. De Meyer, J. Appl. Phys. 115, 044505 (2014).
34.E. O. Kane, J. Phys. Chem. Solids 12, 181 (1960).
35.A. S. Verhulst, W. G. Vandenberghe, K. Maex, and G. Groeseneken, Appl. Phys. Lett. 91, 053102 (2007).
36.M. Liu, Y. Liu, H. Wang, Q. Zhang, C. Zhang, S. Hu, Y. Hao, and G. Han, IEEE Trans. Electron Devices 62, 1262 (2015).

Data & Media loading...


Article metrics loading...



Direct gap GeSn alloys under [100] and [110] uniaxial strain are comprehensively investigated by theoretical calculations using the nonlocal empirical pseudopotential method (EPM). It is shown that [100] uniaxial tensile strain aids indirect-to-direct gap transition in GeSn alloys. The Γ electron effective mass along the optimal direction under [110] uniaxial strain is smaller than those under [100] uniaxial strain and (001) biaxial strain. Additionally, the direct tunneling gap is smallest along the strain-perpendicular direction under [110] uniaxial tensile strain, resulting in a maximum direct band-to-band tunneling generation rate. An optimal [110] uniaxial tensile strain is favorable for high-performance direct gap GeSn electronic devices.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd