Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/1/10.1063/1.4939816
1.
1.G. Sun, R. A. Soref, and H. H. Cheng, J. Appl. Phys. 108, 033107 (2010).
http://dx.doi.org/10.1063/1.3467766
2.
2.V. R. D’Costa, W. Wang, Q. Zhou, T. K. Chan, T. Osipowicz, E. S. Tok, and Y.-C. Yeo, J. Appl. Phys. 116, 053520 (2014).
http://dx.doi.org/10.1063/1.4892105
3.
3.I. S. Yu, T. H. Wu, K. Y. Wu, H. H. Cheng, V. I. Mashanov, A. I. Nikiforov, O. P. Pchelyakov, and X. S. Wu, AIP Advances 1, 042118 (2011).
http://dx.doi.org/10.1063/1.3656246
4.
4.R. R. Lieten, J. W. Seo, S. Decoster, A. Vantomme, S. Peters, K. C. Bustillo, E. E. Haller, M. Menghini, and J.-P. Locquet, Appl. Phys. Lett. 102, 052106 (2013).
http://dx.doi.org/10.1063/1.4790302
5.
5.S. Wirths, Z. Ikonic, A. T. Tiedemann, B. Holländer, T. Stoica, G. Mussler, U. Breuer, J. M. Hartmann, A. Benedetti, S. Chiussi, D. Grützmacher, S. Mantl, and D. Buca, Appl. Phys. Lett. 103, 192110 (2013).
http://dx.doi.org/10.1063/1.4829360
6.
6.J. Mathews, R. Roucka, J. Xie, S.-Q. Yu, J. Menéndez, and J. Kouvetakis, Appl. Phys. Lett. 95, 133506 (2009).
http://dx.doi.org/10.1063/1.3238327
7.
7.J. D. Sau and M. L. Cohen, Phys. Rev. B 75, 045208 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.045208
8.
8.S. Gupta, R. Chen, B. Magyari-Köpe, H. Lin, B. Yang, A. Nainani, Y. Nishi, J. S. Harris, and K. C. Saraswat, in IEEE International Electron Devices Meeting (IEDM) Technical Digest (IEEE, 2011), p. 398.
9.
9.D. Haehnel, I. A. Fischer, A. Hornung, A.-C. Koellner, and J. Schulze, IEEE Trans. Electron Devices 62, 36 (2015).
http://dx.doi.org/10.1109/TED.2014.2371065
10.
10.W. Y. Choi, B.-G. Park, J. D. Lee, and T.-J. K. Liu, IEEE Electron Device Lett. 28, 743 (2007).
http://dx.doi.org/10.1109/LED.2007.901273
11.
11.Y. Yang, S. Su, P. Guo, W. Wang, X. Gong, L. Wang, K. L. Low, G. Zhang, C. Xue, B. Cheng, G. Han, and Y.-C. Yeo, in IEEE International Electron Devices Meeting (IEDM) Technical Digest (IEEE, 2012), p. 379.
12.
12.H. Pérez Ladrón de Guevara, A. G. Rodríguez, H. Navarro-Contreras, and M. A. Vidal, Appl. Phys. Lett. 84, 4532 (2004).
http://dx.doi.org/10.1063/1.1758772
13.
13.V. R. D’Costa, C. S. Cook, A. G. Birdwell, C. L. Littler, M. Canonico, S. Zollner, J. Kouvetakis, and J. Menéndez, Phys. Rev. B 73, 125207 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.125207
14.
14.R. Chen, H. Lin, Y. Huo, C. Hitzman, T. I. Kamins, and J. S. Harris, Appl. Phys. Lett. 99, 181125 (2011).
http://dx.doi.org/10.1063/1.3658632
15.
15.W.-J. Yin, X.-G. Gong, and S.-H. Wei, Phys. Rev. B 78, 161203 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.161203
16.
16.S. Gupta, B. Magyari-Köpe, Y. Nishi, and K. C. Saraswat, J. Appl. Phys. 113, 073707 (2013).
http://dx.doi.org/10.1063/1.4792649
17.
17.A. A. Tonkikh, C. Eisenschmidt, V. G. Talalaev, N. D. Zakharov, J. Schilling, G. Schmidt, and P. Werner, Appl. Phys. Lett. 103, 032106 (2013).
http://dx.doi.org/10.1063/1.4813913
18.
18.R. R. Lieten, T. Maeda, W. Jevasuwan, H. Hattori, N. Uchida, S. Miura, M. Tanaka, and J.-P. Locquet, Appl. Phys. Express 6, 101301 (2013).
http://dx.doi.org/10.7567/APEX.6.101301
19.
19.X. Gong, G. Han, F. Bai, S. Su, P. Guo, Y. Yang, R. Cheng, D. Zhang, G. Zhang, C. Xue, B. Cheng, J. Pan, Z. Zhang, E. S. Tok, D. Antoniadis, and Y.-C. Yeo, IEEE Electron Device Lett. 34, 339 (2013).
http://dx.doi.org/10.1109/LED.2012.2236880
20.
20.P. Guo, G. Han, X. Gong, B. Liu, Y. Yang, W. Wang, Q. Zhou, J. Pan, Z. Zhang, E. S. Tok, and Y.-C. Yeo, J. Appl. Phys. 114, 044510 (2013).
http://dx.doi.org/10.1063/1.4816695
21.
21.Y. Yang, K. L. Low, W. Wang, P. Guo, L. Wang, G. Han, and Y.-C. Yeo, J. Appl. Phys. 113, 194507 (2013).
http://dx.doi.org/10.1063/1.4805051
22.
22.M. Oehme, D. Buca, K. Kostecki, S. Wirths, B. Holländer, E. Kasper, and J. Schulze, J. Cryst. Growth 384, 71 (2013).
http://dx.doi.org/10.1016/j.jcrysgro.2013.09.018
23.
23.R. Chen, Y.-C. Huang, S. Gupta, A. C. Lin, E. Sanchez, Y. Kim, K. C. Saraswat, T. I. Kamins, and J. S. Harris, J. Cryst. Growth 365, 29 (2013).
http://dx.doi.org/10.1016/j.jcrysgro.2012.12.014
24.
24.B. Vincent, F. Gencarelli, H. Bender, C. Merckling, B. Douhard, D. H. Petersen, O. Hansen, H. H. Henrichsen, J. Meersschaut, W. Vandervorst, M. Heyns, R. Loo, and M. Caymax, Appl. Phys. Lett. 99, 152103 (2011).
http://dx.doi.org/10.1063/1.3645620
25.
25.T. Asano, Y. Shimura, O. Nakatsuka, and S. Zaima, Thin Solid Films 531, 504 (2013).
http://dx.doi.org/10.1016/j.tsf.2012.12.063
26.
26.Y. Liu, J. Yan, H. Wang, Q. Zhang, M. Liu, B. Zhao, C. Zhang, B. Cheng, Y. Hao, and G. Han, IEEE Trans. Electron Devices 61, 3639 (2014).
http://dx.doi.org/10.1109/TED.2014.2357446
27.
27.L. Liu, R. Liang, J. Wang, and J. Xu, J. Appl. Phys. 117, 184501 (2015).
http://dx.doi.org/10.1063/1.4921107
28.
28.X. Gong, G. Han, S. Su, R. Cheng, P. Guo, F. Bai, Y. Yang, Q. Zhou, B. Liu, K. H. Goh, G. Zhang, C. Xue, B. Cheng, and Y.-C. Yeo, Symposium on VLSI Technology (IEEE, 2013), p. 34.
29.
29.K. L. Low, Y. Yang, G. Han, W. Fan, and Y.-C. Yeo, J. Appl. Phys. 112, 103715 (2012).
http://dx.doi.org/10.1063/1.4767381
30.
30.M. V. Fischetti and S. E. Laux, J. Appl. Phys. 80, 2234 (1996).
http://dx.doi.org/10.1063/1.363052
31.
31.J. Kim and M. V. Fischetti, J. Appl. Phys. 108, 013710 (2010).
http://dx.doi.org/10.1063/1.3437655
32.
32.S. Sant, S. Lodha, U. Ganguly, S. Mahapatra, F. O. Heinz, L. Smith, V. Moroz, and S. Ganguly, J. Appl. Phys. 113, 033708 (2013).
http://dx.doi.org/10.1063/1.4775839
33.
33.K.-H. Kao, A. S. Verhulst, M. Van de Put, W. G. Vandenberghe, B. Soree, W. Magnus, and K. De Meyer, J. Appl. Phys. 115, 044505 (2014).
http://dx.doi.org/10.1063/1.4862806
34.
34.E. O. Kane, J. Phys. Chem. Solids 12, 181 (1960).
http://dx.doi.org/10.1016/0022-3697(60)90035-4
35.
35.A. S. Verhulst, W. G. Vandenberghe, K. Maex, and G. Groeseneken, Appl. Phys. Lett. 91, 053102 (2007).
http://dx.doi.org/10.1063/1.2757593
36.
36.M. Liu, Y. Liu, H. Wang, Q. Zhang, C. Zhang, S. Hu, Y. Hao, and G. Han, IEEE Trans. Electron Devices 62, 1262 (2015).
http://dx.doi.org/10.1109/TED.2015.2403571
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/1/10.1063/1.4939816
Loading
/content/aip/journal/adva/6/1/10.1063/1.4939816
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/1/10.1063/1.4939816
2016-01-07
2016-09-30

Abstract

Direct gap GeSn alloys under [100] and [110] uniaxial strain are comprehensively investigated by theoretical calculations using the nonlocal empirical pseudopotential method (EPM). It is shown that [100] uniaxial tensile strain aids indirect-to-direct gap transition in GeSn alloys. The Γ electron effective mass along the optimal direction under [110] uniaxial strain is smaller than those under [100] uniaxial strain and (001) biaxial strain. Additionally, the direct tunneling gap is smallest along the strain-perpendicular direction under [110] uniaxial tensile strain, resulting in a maximum direct band-to-band tunneling generation rate. An optimal [110] uniaxial tensile strain is favorable for high-performance direct gap GeSn electronic devices.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/1/1.4939816.html;jsessionid=vScEnyXIFC1JrEHWetBgZOTj.x-aip-live-06?itemId=/content/aip/journal/adva/6/1/10.1063/1.4939816&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/1/10.1063/1.4939816&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/1/10.1063/1.4939816'
Right1,Right2,Right3,