Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.W. Eerenstein, N. D. Mathur, and J. F. Scott, Nature 442, 759765 (2006).
2.C. W. Nan, M. I. Bichurin, S. Dong, D. Viehland, and G. Srinivasan, J. Appl. Phys. 103, 031101 (2008).
3.F. Bai, H. Zhang, J. Li, and D. Viehland, J. Phys. D: Appl. Phys. 43, 28 (2010).
4.G. Srinivasan, Annu. Rev. Mater. Res. 40, 153 (2010).
5.G. Subramanyam, M. W. Cole, N. X. Sun, T. S. Kalkur, N. M. Sbrockey, G. S. Tompa, X. Guo, C. Chen, S. P. Alpay, G. A. Rossetti, K. Dayal, L. Chen, and D. Schlom, J. Appl. Phys. 114, 191301 (2013).
6.J. Zhai, Z. Xing, S. Dong, J. Li, and D. Viehland, Appl. Phys. Letts. 88, 062510 (2006).
7.S. Dong, J. Zhai, F. Bai, J. Li, and D. Viehland, Appl. Phys. Letts. 87, 062502 (2005).
8.H. Greve, E. Woltermann, H. Quenzer, B. Wagner, and E. Quandt, Appl. Phys. Letts. 96, 182501 (2010);
8.C. Kirchhof, M. Krantz, I. Teliban, R. Jahns, S. Marauska, B. Wagner, R. Knöchel, M. Gerken, D. Meyners, and E. Quandt, Appl. Phys. Letts. 102, 232905 (2013).
9.S. Marauska, R. Jahns, H. Greve, E. Quandt, R. Knöchel, and B. Wagner, J. Micromech. Microeng. 22, 065024 (2012).
10.G. L. Yu, H. W. Zhang, F. M. Bai, Y. X. Li, and J. Li, Compos. Struct. 119, 738 (2015).
11.R. Viswan, D. Gray, Y. J. Wang, J. F. Li, and D. Viehland, Physics Status Solidi RRL 5, 391 (2011).
12.H. Nakahata, K. Higaki, H. Kenjiro, S. Fujii, S. Shikata, and N. Fujimori, IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 42, 362 (1995).
13.T. Wu and Y. Chen, IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 49, 142 (2002).
14.P. M. Anderson III, J. Appl. Phys. 53, 8101 (1982);
14.C. Modzelewski, H. T. Savage, L. T. Kabacoff, and A. E. Clark, IEEE Tran. Magn. 17, 2837 (1981).
15.P. Smole, W. Ruile, C. Korden, A. Ludwig, E. Quandt, S. Krassnitzer, and P. Pongratz, IEEE Proc. Freq. Cont. Symp. 903 (2003).
16.T. Nan, Y. Hui, M. Rinaldi, and N. X. Sun, Sci. Rep. 3, 1985 (2013).
17.A. Ludwig and E. Quandt, IEEE Trans. Magn. 38, 2829 (2002).
18.A. Reinhardt, T. Pastureaud, S. Ballandras, and V. Laude, J. Appl. Phys. 94, 6923 (2003);
18.Th. Pastureaud, V. Laude, and S. Ballandras, Appl. Phys. Letts. 80, 2544 (2002).
19.J. G. Gualtieri, J. A. Kosinski, and A. Ballato, IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 41, 53 (1994).
20.See supplementary material at for the detailed calculation of the effective permittivity and the phase velocity of a ZnO/Metglas half space.[Supplementary Material]
21.C. Modzelewski, H. T. Savage, L. T. Kabacoff, and A. E. Clark, IEEE Tran Magn 17, 2837-39 (1981).
22.K. I. Arai and N. Tsuya, J. Appl. Phys. 78, 1718-20 (1978).
23. As far as the magnetic field frequency is lower than the resonance frequency of Metglas, the Δ E effect is stable and very useful for low frequency magnetic field measurement. The resonance frequency (fres) of Metglas is determined by , where EMetglas, ρ and l are the Young’s modulus, mass density and length of Metglas ribbon, respectively.
24.B. Gojdka, R. Jahns, K. Meurisch, H. Greve, R. Adelung, E. Quandt, R. Knoc¨hel, and F. Faupel, Appl. Phys. Letts. 99, 223502 (2011).
25.R. Jahns, S. Zabel, S. Marauska, B. Gojdka, B. Wagner, R. Knochel, R. Adelung, and F. Faupe, Appl. Phys. Letts. 105, 052414 (2014).
26.W. Buff, S. Klett, M. Rusko, J. Ehrenpfordt, and M. Goroll, IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 45, 1388 (1998).

Data & Media loading...


Article metrics loading...



The surface acoustic wave properties of piezoelectric/magnetostrictive layered structures consisting of insulating ZnO and metallic Metglas with giant effect were studied based on a stable scattering matrix method. Only the first Rayleigh mode was found with phase velocity between 2200 m/s and 2650 m/s, and the maximum electro-mechanical coupling coefficient about 1%. It was found that the center frequency of ZnO/Metglas is highly sensitive on the change of magnetic field, up to 440 MHz/Oe. However, there is a cutoff Young’s modulus of Metglas for different designs of SAW, below which the Rayleigh mode will disappear. For a magnetoelectric SAW design with the center frequency of 335 MHz and covering a full magnetic field range from -1.4 to +1.4 Oe, the frequency sensitivity is 212 MHz/Oe, equivalent to a magnetic field sensitivity of 5 × 10−12 Tesla. Unlike conventional magnetoelectric bulk laminates or film stacks, the detection of frequency shift instead of electrical charge allows not only shrinkage of device volume but also a broad frequency band detection of weak magnetic field.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd