Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/1/10.1063/1.4939847
1.
1.A. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).
http://dx.doi.org/10.1103/RevModPhys.81.109
2.
2.M. Feng, B. Shao, X.W. Cao, and X. Zuo, J. Appl. Phys. 117, 17C118 (2015).
http://dx.doi.org/10.1063/1.4916299
3.
3.J. Mei, Y. Wu, C.T. Chan, and Z.Q. Zhang, Phys. Rev. B. 86, 035141 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.035141
4.
4.Y. Wu, Opt. Express. 22, 1906 (2014).
http://dx.doi.org/10.1364/OE.22.001906
5.
5.Y. Li, Y. Wu, and J. Mei, Appl. Phys. Lett. 105, 014107 (2014).
http://dx.doi.org/10.1063/1.4890304
6.
6.Y. Li, Y. Wu, X. Chen, and J. Mei, Opt. Express. 21, 7699 (2013).
http://dx.doi.org/10.1364/OE.21.007699
7.
7.F.M. Liu, Y Lai, X.Q. Huang, and C.T. Chan, Phys. Rev. B. 84, 224113 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.224113
8.
8.F.M. Liu, X.Q. Huang, and C.T. Chan, Appl. Phys. Lett. 100, 071911 (2012).
http://dx.doi.org/10.1063/1.3686907
9.
9.X. Q. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C.T. Chan, Nat. Mater. 10, 582 (2011).
http://dx.doi.org/10.1038/nmat3030
10.
10.Z.G. Chen, X. Ni, Y. Wu, C. He, X.C. Sun, L.Y. Zheng, M.H. Lu, and Y.F. Chen, Sci. Rep. 4, 04613 (2014).
11.
11.L.Y. Zheng, Y. Wu, X. Ni, Z.G. Chen, M.H. Lu, and Y.F. Chen, Appl. Phys. Lett. 104, 161904 (2014).
http://dx.doi.org/10.1063/1.4873354
12.
12.X.F. Zhu, Phys. Lett. A. 377, 1784 (2013).
http://dx.doi.org/10.1016/j.physleta.2013.05.038
13.
13.H. Guo, H. Liu, X Zhang, H. Chen, W. Liu, S. Wang, and Y. Cui, Appl. Phys. Express. 6, 042003 (2013).
http://dx.doi.org/10.7567/APEX.6.042003
14.
14.K. Sakoda, Opt. Express. 20, 3898 (2012).
http://dx.doi.org/10.1364/OE.20.003898
15.
15.K. Sakoda, Opt. Express. 20, 25181 (2012).
http://dx.doi.org/10.1364/OE.20.025181
16.
16.X.D. Zhang, Phys. Rev. Lett. 100, 113903 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.113903
17.
17.X.D. Zhang and Z.Y. Liu, Phys. Rev. Lett. 101, 264303 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.264303
18.
18.J. Mei, Z. Liu, J. Shi, and D. Tian, Phys. Rev. B. 67, 245107 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.245107
19.
19.J. Mei, Z.Y. Liu, W.J. Wen, and P. Sheng, Phys. Rev. B. 76, 134205 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.134205
20.
20.Y. Wu, J. Li, Z.Q. Zhang, and C. T. Chan, Phys. Rev. B. 74, 085111 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.085111
21.
21.Y. Wu, Y. Lai, and Z. Q. Zhang, Phys. Rev. B. 76, 205313 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.205313
22.
22.J. H. Pixley, Pallab Goswami, and S. Das Sarma, Phys. Rev. Lett. 115, 076601 (2015).
http://dx.doi.org/10.1103/PhysRevLett.115.076601
23.
23.Z.Y. Liu, X.X. Zhang, Y.W. Mao, Y. Y. Zhu, Z.Y. Yang, C. T. Chan, and P. Sheng, Science. 289, 1734 (2000).
http://dx.doi.org/10.1126/science.289.5485.1734
24.
24.Y. Li, B. Liang, Z.M. Gu, X.Y. Zou, and J.C. Cheng, Appl. Phys. Lett. 103, 053505 (2013).
http://dx.doi.org/10.1063/1.4817249
25.
25.Y.Y. Fu, L. Xu, Z.H. Hang, and H.Y. Chen, Appl. Phys. Lett. 104, 193509 (2014).
http://dx.doi.org/10.1063/1.4878400
26.
26.A Alù, M. Silveirinha, A. Salandrino, and N. Engheta, Phys. Rev. B. 75, 155410 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.155410
27.
27.M. S. Dresselhaus, G. Dresselhaus, and A. Jorio, Group Theory: Application to the Physics of Condensed Matter (Springer,Verlag, 2008).
28.
28.Z.X. Liang and J. Li, Phys. Rev. Lett. 108, 114301 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.114301
29.
29.J. Li and C. T. Chan, Phys. Rev. E. 70, 055602 (2004).
http://dx.doi.org/10.1103/PhysRevE.70.055602
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/1/10.1063/1.4939847
Loading
/content/aip/journal/adva/6/1/10.1063/1.4939847
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/1/10.1063/1.4939847
2016-01-08
2016-09-26

Abstract

A Dirac-like cone is formed by utilizing the flat bands associated with localized modes in an acoustic crystal (AC) composed of a square array of core-shell-structure cylinders in a water host. Although the triply-degeneracy seems to arise from two almost-overlapping flat bands touching another curved band, the enlarged view of the band structure around the degenerate point reveals that there are actually two linear bands intersecting each other at the Brillouin zone center, with another flat band passing through the same crossing point. The linearity of dispersion relations is achieved by tuning the geometrical parameters of the cylindrical scatterers. A perturbation method is used to not only accurately predict the linear slopes of the dispersions, but also confirm the linearity of the bands from first principles. An effective medium theory based on coherent potential approximation is developed, and it shows that a slab made of the AC carries a near-zero refractive index around the Dirac-like point. Full-wave simulations are performed to unambiguously demonstrate the wave manipulating properties of the AC structures such as perfect transmission, unidirectional transmission and wave front shaping.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/1/1.4939847.html;jsessionid=OEp-rCnN00jQ77dXLUd-9a-3.x-aip-live-06?itemId=/content/aip/journal/adva/6/1/10.1063/1.4939847&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/1/10.1063/1.4939847&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/1/10.1063/1.4939847'
Right1,Right2,Right3,