Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/1/10.1063/1.4939848
1.
1.M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, Prog. Photovoltaics 22, 701 (2014).
http://dx.doi.org/10.1002/pip.2525
2.
2.A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, J. Am. Chem. Soc. 131, 6050 (2009).
http://dx.doi.org/10.1021/ja809598r
3.
3.M. K. Nazeeruddin and H. Snaith, MRS Bull. 40, 641 (2015).
http://dx.doi.org/10.1557/mrs.2015.169
4.
4.X. Zhu, H. Su, R. A. Marcus, and M. E. Michel-Beyerle, J. Phys. Chem. Lett 5, 3061 (2014).
http://dx.doi.org/10.1021/jz501174e
5.
5.C.J. Brabec, N.S. Sariciftci, and J.C. Hummelen, Adv. Funct. Mater. 11, 15 (2001).
http://dx.doi.org/10.1002/1616-3028(200102)11:1<15::AID-ADFM15>3.0.CO;2-A
6.
6.P. Peumans, A. Yakimov, and S.R. Forrest, J. Appl. Phys 93, 3693 (2003).
http://dx.doi.org/10.1063/1.1534621
7.
7.G. Li, R. Zhu, and Y. Yang, Nature Photon. 6, 153 (2012).
http://dx.doi.org/10.1038/nphoton.2012.11
8.
8.R. A. J. Janssen and J. Nelson, Adv. Mater. 25, 1847 (2013).
http://dx.doi.org/10.1002/adma.201202873
9.
9.M. B. Smith and J. Michl, Chem. Rev. 110, 6891 (2010).
http://dx.doi.org/10.1021/cr1002613
10.
10.M. Tabachnyk, B. Ehrler, S. Gélinas, M. L. Böhm, B. J. Walker, K.P. Musselman, N. C. Greenham, R. H. Friend, and A. Rao, Nature Mater. 13, 1033 (2014).
http://dx.doi.org/10.1038/nmat4093
11.
11.Y. Yang, W. Chen, L. Dou, W.-H. Chang, H.-S. Duan, B. Bob, G. Li, and Y. Yang, Nature Photon 9, 190 (2015).
http://dx.doi.org/10.1038/nphoton.2015.9
12.
12.M. Onodera, R. Nagumo, R. Miura, A. Suzuki, H. Tsuboi, N. Hatakeyama, A. Endou, H. Takaba, M. Kubo, and A. Miyamoto, Jpn. J. Appl. Phys. 50, 04DP06 (2011).
http://dx.doi.org/10.7567/JJAP.50.04DP06
13.
13.Y. Yamamoto, G. Zhang, W. Jin, T. Fukushima, N. Ishii, A. Saeki, S. Seki, S. Tagawa, T. Minari, K. Tsukagoshi, and T. Aida, Proc. Natl. Acad. Sci. USA 106, 21051 (2009).
http://dx.doi.org/10.1073/pnas.0905655106
14.
14.Y. Moritomo, K. Yonezawa, M. Ito, H. Kamioka, Y. Yamamoto, T. Fukushima, and T. Aida, Appl. Phys. Exp. 5, 062401 (2012).
http://dx.doi.org/10.1143/APEX.5.062401
15.
15.M. Wu, C. Cao, and J. Z Jiang, Nanotechnol. 21, 505202 (2010).
http://dx.doi.org/10.1088/0957-4484/21/50/505202
16.
16.Z. Zhou, A. Wakamiya, T. Kushida, and S. Yamaguchi, J. Am. Chem. Soc. 134, 4529 (2012).
http://dx.doi.org/10.1021/ja211944q
17.
17.W. H. Brito, H. Chacham, R. Kagimura, and R. H. Miwa, Nanotechnol. 25, 245706 (2014).
http://dx.doi.org/10.1088/0957-4484/25/24/245706
18.
18.R. R. Nair, W. Ren, R. Jalil, I. Riaz, V. G. Kravets, L. Britnell, P. Blake, F. Schedin, A. S. Mayorov, S. Yuan, M. I. Katsnelson, H. Cheng, W. Strupinski, L. G. Bulusheva, A. V. Okotrub, I. V. Grigorieva, A. N. Grigorenko, K. S. Novoselov, and A. K. Geim, Small 6, 2773 (2010).
http://dx.doi.org/10.1002/smll.201090086
19.
19.H. Gao, Z. Liu, L. Song, W. Guo, W. Gao, L. Ci, A. Rao, W. Quan, R. Vajtai, and P. M. Ajayan, Nanotechnol. 23, 275605 (2012).
http://dx.doi.org/10.1088/0957-4484/23/27/275605
20.
20.D. Chen, H. Feng, and J. Li, Chem. Rev. 112, 6027 (2012).
http://dx.doi.org/10.1021/cr300115g
21.
21.H. Akiyoshi, H. Goto, E. Uesugi, R. Eguchi, Y. Yoshida, G. Saito, and Y. Kubozono, Adv. Electron. Mater 1, 1500073 (2015).
http://dx.doi.org/10.1002/aelm.201500073
22.
22.J. Schafferhans, A. Baumann, A. Wagenpfahl, C. Deibel, and V. Dyakonov, Org. Electron. 11, 1693 (2010).
http://dx.doi.org/10.1016/j.orgel.2010.07.016
23.
23.F. Deledalle, T. Kirchartz, M. S. Vezie, M. Campoy-Quiles, P. S. Tuladhar, J. Nelson, and J. R. Durrant, Phes. Rev. X 5, 011032 (2015).
24.
24.B. Fan, R. Hany, J.-E. Moser, and F. Nüesch, Org. Electron. 9, 85 (2008).
http://dx.doi.org/10.1016/j.orgel.2007.09.008
25.
25.W. Wang, A. S. Lin, and J. D. Phillips, Appl. Phys. Lett. 95, 011103 (2008).
http://dx.doi.org/10.1063/1.3166863
26.
26.S. Ohmura, S. Koga, I. Akai, F. Shimojo, R. K. Kalia, A. Nakano, and P. Vashishta, App. Phys. Lett. 98, 113302 (2011).
http://dx.doi.org/10.1063/1.3565962
27.
27.F. Shimojo, S. Ohmura, W. Mou, R. K. Kalia, A. Nakano, and P. Vashishta, Comput. Phys. Commun. 184, 1 (2013).
http://dx.doi.org/10.1016/j.cpc.2012.08.001
28.
28.M. E. Casida, in Recent Advances in Density Functional Methods (Part I), edited byD. P. Chong (World Scientific, Singapore, 1995), pp. 155192.
29.
29.X. Zhang and G. Lu, J. Chem. Phys. 143, 064110 (2015).
http://dx.doi.org/10.1063/1.4928510
30.
30.C. P. Hu, H. Hirai, and O. Sugino, J. Chem. Phys. 127, 064103 (2007).
http://dx.doi.org/10.1063/1.2755665
31.
31.A. Dreuw, J. L. Weisman, and M. Head-Gordon, J. Chem. Phys. 119, 2943 (2003).
http://dx.doi.org/10.1063/1.1590951
32.
32.A. Dreuw and M. Head-Gordon, J. Am. Chem. Soc 126, 4007 (2004).
http://dx.doi.org/10.1021/ja039556n
33.
33.B. A. Gregg and M. C. Hanna, J. Appl. Phys. 93, 3605 (2003).
http://dx.doi.org/10.1063/1.1544413
34.
34.J. C. Tully, J. Chem. Phys. 93, 1061 (1990).
http://dx.doi.org/10.1063/1.459170
35.
35.W. R. Duncan, C. F. Craig, and O. V. Prezhdo, J. Am. Chem. Soc. 129, 8528 (2007).
http://dx.doi.org/10.1021/ja0707198
36.
36.E. Tapavicza, I. Tavernelli, and U. Rothlisberger, Phys. Rev. Lett. 98, 023001 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.023001
37.
37.W. Mou, S. Ohmura, F. Shimojo, and A. Nakano, App. Phys. Lett. 100, 203306 (2012).
http://dx.doi.org/10.1063/1.4719206
38.
38.W. Mou, S. Ohmura, S. Hattori, K. Nomura, F. Shimojo, and A. Nakano, J. Chem. Phys. 136, 184705 (2012).
http://dx.doi.org/10.1063/1.4712616
39.
39.D.L. Dexter, J. Chem. Phys. 21, 836 (1953).
http://dx.doi.org/10.1063/1.1699044
40.
40.D.R. Dreyer, S. Park, C,W Bielawski, and R. S. Ruoff, Chem. Soc. Rev. 39, 228 (2010).
http://dx.doi.org/10.1039/B917103G
41.
41.G. Eda and M. Chowalla, Adv. Mater. 22, 2392 (2010).
http://dx.doi.org/10.1002/adma.200903689
42.
42.Y. Zhu, D. K. James, and J. M. Tour, Adv. Mater. 24, 4924 (2012).
http://dx.doi.org/10.1002/adma.201202321
43.
43.K. P. Loh, Q. Bao, G. Eda, and M. Chhowalla, Nature Chem. 2, 1015 (2010).
http://dx.doi.org/10.1038/nchem.907
44.
44.C. Su and K. P. Loh, Acc. Chem. Res. 46, 2275 (2013).
http://dx.doi.org/10.1021/ar300118v
45.
45.D. Kozawa, X. Zhu, Y. Miyauchi, S. Mouri, M. Ichida, H. Su, and K. Matsuda, J. Phys. Chem. Lett. 5, 1754 (2014).
http://dx.doi.org/10.1021/jz500516u
46.
46.M. J. McAllister, J.-L. Li, D. H. Adamson, H. C. Sehniepp, A. A. Abdala, J. Liu, M. Herrera-Alonso, D. L. Milius, R. Car, R. K. Prud’homme, and I. A. Aksay, Chem. Mater. 19, 4396 (2007).
http://dx.doi.org/10.1021/cm0630800
47.
47.S. Yamamoto, H. Kinoshita, H. Hashimoto, and Y. Nishina, Nanoscale 6, 6501 (2014).
http://dx.doi.org/10.1039/c4nr00715h
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/1/10.1063/1.4939848
Loading
/content/aip/journal/adva/6/1/10.1063/1.4939848
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/1/10.1063/1.4939848
2016-01-08
2016-09-26

Abstract

Using theoretical methods, we demonstrate possible enhancement of photo-conversion efficiency of an organic solar cell via intentional doping in molecular graphene-fullerene heterojunction [the hexabenzocoronene (HBC)-triethylene glycol (TEG)–C molecule]. Photoabsorption analysis indicates oxygen substitution into HBC leads to an extension of the spectra up to an infrared regime. A quantum-mechanical molecular dynamics simulation incorporating nonadiabatic electronic transitions reveals that a dissociated charge state (D+ and A-) in the O-doped system is more stable than the pristine case due to the presence of an effective barrier by the TEG HOMO/LUMO level. We also find that oxygen doping in HBC enhances the intermolecular carrier mobility after charge separation. On the other hand, the pristine molecule undergoes rapid recombination between donor and acceptor charges at the interface. These analyses suggest that the graphene oxidation opens a new window in the application of organic super-molecules to solar cells.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/1/1.4939848.html;jsessionid=9P4w6GDDDT7XbFRn4_utLVWv.x-aip-live-02?itemId=/content/aip/journal/adva/6/1/10.1063/1.4939848&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/1/10.1063/1.4939848&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/1/10.1063/1.4939848'
Right1,Right2,Right3,