Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/1/10.1063/1.4939934
1.
1.T. Graf, C. Felser, and S.S.P. Parkin, Progress in Solid State Chemistry 39, 1 (2011).
http://dx.doi.org/10.1016/j.progsolidstchem.2011.02.001
2.
2.B. Balke, G. H. Fecher, A. Gloskovskii, J. Barth, K. Kroth, C. Felser, R. Robert, and A. Weidenkaff, Phys. Rev. B 77, 045209 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.045209
3.
3.S. Ouardi, G. H. Fecher, C. Felser, M. Schwall, S.S. Naghavi, A. Gloskovskii, B. Balke, J. Hamrle, K. Postava, J. Pištora, S. Ueda, and K. Kobayashi, Phys. Rev. B 86, 045116 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.045116
4.
4.R. A. de Groot, F. M. Mueller, P. G. van Engen, and K. H. J. Buschow, Phys. Rev. Lett. 50, 2024 (1983).
http://dx.doi.org/10.1103/PhysRevLett.50.2024
5.
5.M. Ibrir, P. H. Dederichs, and N. Papanikolaou, Phys. Rev. B 66, 174429 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.174429
6.
6.S. Chadov, X. Qi, J. Kübler, G. H. Fecher, C. Felser, and S. C. Zhang, Nat Mater 9, 541 (2010).
http://dx.doi.org/10.1038/nmat2770
7.
7.G. D. Liu, X. F. Dai, H. Y. Liu, J. L. Chen, Y. X. Li, G. Xiao, and G. H. Wu, Phys. Rev. B 77, 014424 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.014424
8.
8.S. Ouardi, G. H. Fecher, C. Felser, and J. Kübler, Phys. Rev. Lett. 110, 100401 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.100401
9.
9.S. Skaftouros, K. Özdoǧan, E. Şaşoǧlu, and I. Galanakis, Appl. Phys. Lett. 102, 022402 (2013).
http://dx.doi.org/10.1063/1.4775599
10.
10.G. Z. Xu, E. K. Liu, Y. Du, G. J. Li, G. D. Liu, W. H. Wang, and G. H. Wu, EPL 102, 17007 (2013).
http://dx.doi.org/10.1209/0295-5075/102/17007
11.
11.X. L Wang, Phys. Rev. Lett. 100, 156404 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.156404
12.
12.A. Brataas, A. D. Kent, and H. Ohno, Nat Mater 11, 372 (2012).
http://dx.doi.org/10.1038/nmat3311
13.
13.M. E. Jamer, B. A. Assaf, T. Devakul, and D. Heiman, Appl. Phys. Lett. 103, 142403 (2013).
http://dx.doi.org/10.1063/1.4823601
14.
14.G. Z. Xu, Y. Du, X. M. Zhang, H. G. Zhang, E. K. Liu, W. H. Wang, and G. H. Wu, Appl. Phys. Lett. 104, 242408 (2014).
http://dx.doi.org/10.1063/1.4884203
15.
15.H. Yoda, T. Kishi, T. Nagase, M. Yoshikawa, K. Nishiyama, E. Kitagawa, T. Daibou, M. Amano, N. Shimomura, S. Takahashi, T. Kai, M. Nakayama, H. Aikawa, S. Ikegawa, M. Nagamine, J. Ozeki, S. Mizukami, M. Oogane, Y. Ando, S. Yuasa, K. Yakushiji, H. Kubota, Y. Suzuki, Y. Nakatani, T. Miyazaki, and K. Ando, Current Applied Physics 10, e87 (2010).
http://dx.doi.org/10.1016/j.cap.2009.12.021
16.
16.S. Ikeda, K. Miura, H. Yamamoto, K. Mizunuma, H.D. Gan, M. Endo, S. Kanai, J. Hayakawa, F. Matsukura, and H. Ohno, Nat Mater 9, 721 (2010).
http://dx.doi.org/10.1038/nmat2804
17.
17.A. Manchon, C. Ducruet, L. Lombard, S. Auffret, B. Rodmacq, B. Dieny, S. Pizzini, J. Vogel, V. Uhlíř, M. Hochstrasser, and G. Panaccione, J. Appl. Phys 104, 043914 (2008).
http://dx.doi.org/10.1063/1.2969711
18.
18.K. Munira, J. Romero, and W.H. Butler, J. Appl. Phys 115, 17B731 (2014).
http://dx.doi.org/10.1063/1.4866703
19.
19.X. Chen, C. Feng, Z. L. Wu, F. Yang, Y. Liu, S. Jiang, M. H. Li, and G. H. Yu, Appl. Phys. Lett. 104, 052413 (2014).
http://dx.doi.org/10.1063/1.4864184
20.
20.H. X. Yang, M. Chshiev, B. Dieny, J. H. Lee, A. Manchon, and K. H. Shin, Phys. Rev. B 84, 054401 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.054401
21.
21.S. Yakata, H. Kubota, Y. Suzuki, K. Yakushiji, A. Fukushima, S. Yuasa, and K. Ando, J. Appl. Phys 105, 07D131 (2009).
http://dx.doi.org/10.1063/1.3057974
22.
22.X. Chen, K.Y. Wang, Z. L. Wu, S. L. Jiang, G. Yang, Y. Liu, J. Teng, and G. H. Yu, Appl. Phys. Lett. 105, 092402 (2014).
http://dx.doi.org/10.1063/1.4894765
23.
23.C. Y. You, H. R. Fu, X. Zhang, N. Tian, and P. W. Wang, J. Magn. Magn. Mater. 377, 276 (2015).
http://dx.doi.org/10.1016/j.jmmm.2014.10.065
24.
24.Y. Tian, L. Ye, and X. Jin, Phys. Rev. Lett. 103, 087206 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.087206
25.
25.N. Y. Sun, Y. Q. Zhang, W. R. Che, R. Shan, and Z. G. Zhu, “Evolution of Anomalous Hall Behavior in Thin Pt/Co/Pt Trilayers,” submitted to J. Magn. Magn. Mater.
26.
26.J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, Handbook of x-ray photoelectron spectroscopy: a reference book of standard spectra for identification and interpretation of XPS data (Perkin-Elmer, Boca Raton, FL, 1992).
27.
27.J.P. Bonnelle, J. Grimblot, and A. Dhuysser, Journal of Electron Spectroscopy and Related Phenomena 7, 151 (1975).
http://dx.doi.org/10.1016/0368-2048(75)80047-8
28.
28.S.-L. Chang, J. W. Anderegg, and P. A. Thiel, Journal of Non-Crystalline Solids 195, 95 (1996).
http://dx.doi.org/10.1016/0022-3093(95)00537-4
29.
29.C. Y. You, A. Cerezo, P. H. Clifton, L. Folks, M. J. Carey, and A. K. Petford-Long, Appl. Phys. Lett. 91, 011905 (2007).
http://dx.doi.org/10.1063/1.2754364
30.
30.H. R. Fu, C. Y. You, Y. L. Li, K. Wang, and N. Tian, “Interfacial contributions to perpendicular magnetic anisotropy in Pd/Co2MnSi/MgO trilayer films,” submitted to Scientific Reports.
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/1/10.1063/1.4939934
Loading
/content/aip/journal/adva/6/1/10.1063/1.4939934
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/1/10.1063/1.4939934
2016-01-11
2016-09-27

Abstract

Heusler compound MnCoAl (MCA) is attracting more attentions due to many novel properties, such as high resistance, semiconducting behavior and suggestion as a spin-gapless material with a low magnetic moment. In this work, MnCoAlepitaxialthin film was prepared on MgO(100) substrate by magnetron sputtering. The transport property of the film exhibits a semiconducting-like behavior. Moreover, our research reveals that perpendicular magnetic anisotropy (PMA) can be induced in very thin MnCoAlfilms resulting from Mn-O and Co-O bonding at MnCoAl/MgO interface, which coincides with a recent theoretical prediction. PMA and low saturation magnetic moment could lead to large spin-transfer torque with low current density in principle, and thus our work may bring some unanticipated Heusler compounds into spintronics topics such as the domain wall motion and the current-induced magnetization reversal.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/1/1.4939934.html;jsessionid=XgZFuBBsj38sxyFN_f160XZ_.x-aip-live-06?itemId=/content/aip/journal/adva/6/1/10.1063/1.4939934&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/1/10.1063/1.4939934&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/1/10.1063/1.4939934'
Right1,Right2,Right3,