Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.K. S. Novoselov, A. K. Geim, S. V Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V Grigorieva, and A. A. Firsov, Science 306(80-.), 666669 (2004).
2.Q. X. Pei, Y. W. Zhang, and V. B. Shenoy, Carbon N. Y. 48, 898904 (2010).
3.A. S. Mayorov, R. V. Gorbachev, S. V. Morozov, L. Britnell, R. Jalil, L. a. Ponomarenko, P. Blake, K. S. Novoselov, K. Watanabe, T. Taniguchi, and a. K. Geim, Nano Lett. 11, 23962399 (2011).
4.A. a. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, Nano Lett. 8, 902907 (2008).
5.C. Lee, X. Wei, J. W. Kysar, J. Hone, and W. Jeffrey, 321, 385388 (2015).
6.R. R. Nair, a N. Grigorenko, P. Blake, K. S. Novoselov, T. J. Booth, N. M. R. Peres, T. Stauber, and a K. Geim, Science 320(80-.), 1308 (2008).
7.N. Mounet and N. Marzari, Phys. Rev. B 71, 205214 (2005).
8.L. Liao, J. Bai, R. Cheng, Y.-C. Lin, S. Jiang, Y. Qu, Y Huang, and X. Duan, Nano Lett. 10, 39523956 (2010).
9.I. Baylam, M. N. Cizmeciyan, S. Ozharar, E. O. Polat, C. Kocabas, and A. Sennaroglu, Cleo 2014 1, STu1E.2 (2014).
10.J. Liu, M. Durstock, and L. Dai, Energy Environ. Sci. 7, 12971306 (2014).
11.W. Zhao, Y. Wang, Z. Wu, W. Wang, K. Bi, Z. Liang, J. Yang, Y. Chen, Z. Xu, and Z. Ni, Sci. Rep. 5, 11962 (2015).
12.H. Tian, D. Xie, Y. Yang, T.-L. Ren, Y.-F. Wang, C.-J. Zhou, P.-G. Peng, L.-G. Wang, and L.-T. Liu, Nanoscale 4, 3345 (2012).
13.J. W. Suk, K. Kirk, Y. Hao, N. a. Hall, and R. S. Ruoff, Adv. Mater. 24, 63426347 (2012).
14.S. C. Xu, B. Y. Man, S. Z. Jiang, C. S. Chen, C. Yang, M. Liu, X. G. Gao, Z. C. Sun, and C. Zhang, Appl. Phys. Lett. 102, 20112015 (2013).
15.H. Tian, D. Xie, Y. Yang, T.-L. Ren, Y.-F. Wang, C.-J. Zhou, P.-G. Peng, L.-G. Wang, and L.-T. Liu, Nanoscale 4, 2272 (2012).
16.H. Tian, Y. Yang, D. Xie, J. Ge, and T.-L. Ren, RSC Adv. 3, 17672 (2013).
17.M. F. El-Kady and R. B. Kaner, Nat. Commun. 4, 1475 (2013).
18.H. Tian, Y. Yang, D. Xie, Y.-L. Cui, W.-T. Mi, Y. Zhang, and T.-L. Ren, Sci. Rep. 4, 3598 (2014).
19.H.D. ARNOLD and I.B. CRANDALL, Phys 1917, 2238.
20.S. S. Asadzadeh, a. Moosavi, C. Huynh, and O. Saleki, J. Appl. Phys. 117, 095101 (2015).

Data & Media loading...


Article metrics loading...



A thermal acoustic (TA) device was fabricated by laser scribing technology. Polyimide (PI) can be converted into patterned porous graphene (PG) by laser’s irradiation in one step. The sound pressure level (SPL) of such TA device is related to laser power. The theoretical model of TA effect was established to analyze the relationship between the SPL and laser power. The theoretical results are in good agreement with experiment results. It was found that PG has a flat frequency response in the range of 5-20 kHz. This novel TA device has the advantages of one-step procedure, high flexibility, no mechanical vibration, low cost and so on. It can open wide applications in speakers, multimedia, medical, earphones, consumer electronics and many other aspects.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd