Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/1/10.1063/1.4939936
1.
1.S. Rajan and D. Jena, Semicond. Sci. Technol. 28, 070301 (2013).
http://dx.doi.org/10.1088/0268-1242/28/7/070301
2.
2.S. Chowdhury, B. L. Swenson, M. H. Wong, and U. K. Mishra, Semicond. Sci. Technol. 28, 074014 (2013).
http://dx.doi.org/10.1088/0268-1242/28/7/074014
3.
3.D. Maier, M. Alomari, N. Grandjean, J. F. Carlin, M. A. di F. Poisson, C. Dua, A. Chuvilin, D. Troadec, C. Gaquière, U. Kaiser, S. L. Delage, and E. Kohn, IEEE Trans. Device Mat. Rel. 10, 427 (2010).
http://dx.doi.org/10.1109/TDMR.2010.2072507
4.
4.S. J. Pearton, R. Deist, F. Ren, L. Liu, A. Y. P., and J. Kim, J. Vac. Sci. Technol. A 31, 050801-1 (2013).
http://dx.doi.org/10.1116/1.4799504
5.
5.S. J. Chang, C. H. Chen, Y. K. Su, J. K. Sheu, W. C. Lai, J. M. Tsai, C. H. Liu, and S. C. Chen, IEEE Electron Device Lett. 24, 129 (2003).
http://dx.doi.org/10.1109/LED.2003.809043
6.
6.L. Sun, J. Chen, J. Li, and H. Jiang, Appl. Phys. Lett. 97, 191103 (2010).
http://dx.doi.org/10.1063/1.3515903
7.
7.X. Wang, W. Hu, X. Chen, J. Xu, L. Wang, X. Li, and W. Lu, J. Phys. D: Appl. Phys. 44, 405102 (2011).
http://dx.doi.org/10.1088/0022-3727/44/40/405102
8.
8.X. D. Wang, W. D. Hu, X. S. Chen, and W. Lu, IEEE Trans. Electron Devices 59, 1393 (2012).
http://dx.doi.org/10.1109/TED.2012.2188634
9.
9.K. R. Peta, B. G. Park, S. T. Lee, M. D. Kim, and J. E. Oh, Microelectron. Eng. 93, 100 (2012).
http://dx.doi.org/10.1016/j.mee.2011.11.019
10.
10.A. Kumar, S. Vinayak, and R. Singh, Curr. Appl. Phys. 13, 1137 (2013).
http://dx.doi.org/10.1016/j.cap.2013.03.009
11.
11.M. S. P. Reddy, A. A. Kumar, and V. R. Reddy, Thin Solid Films 519, 3844 (2011).
http://dx.doi.org/10.1016/j.tsf.2011.01.258
12.
12.P. Hacke, T. Detchprohm, K. Hiramatsu, and N. Sawaki, Appl. Phys. Lett. 63, 2676 (1993).
http://dx.doi.org/10.1063/1.110417
13.
13.E. J. Miller, E. T. Yu, P. Waltereit, and J. S. Speck, Appl. Phys. Lett. 84, 535 (2004).
http://dx.doi.org/10.1063/1.1644029
14.
14.N. Yıldırım, K. Ejderha, and A. Turut, J. Appl. Phys. 108, 114506 (2010).
http://dx.doi.org/10.1063/1.3517810
15.
15.Y. D. Wei, Z. Z. Min, C. J. Min, G, X. Feng, and L. Hai, Chin. Phys. Lett. 29, 087204 (2012).
http://dx.doi.org/10.1088/0256-307X/29/8/087204
16.
16.A. Kumar, K. Asokan, V. Kumar, and R. Singh, J. Appl. Phys. 112, 024507 (2012).
http://dx.doi.org/10.1063/1.4737258
17.
17.H. B. Michaelson, J. Appl. Phys. 48, 4729 (1977).
http://dx.doi.org/10.1063/1.323539
18.
18.M. O. Aboelfotoh, A. Cros, B. G. Svensson, and K. N. Tu, Phys. Rev. B 41, 9819 (1990).
http://dx.doi.org/10.1103/PhysRevB.41.9819
19.
19.J. P. Ao, D. Kikuta, N. Kubota, Y Naoi, and Y. Ohno, IEEE Electron Device Lett. 24, 500 (2003).
http://dx.doi.org/10.1109/LED.2003.815158
20.
20.W. Schottky, Naturwissenschaften 26, 843 (1938).
http://dx.doi.org/10.1007/BF01774216
21.
21.N. F. Mott, Proc. Cambridge Philos. SOC. 34, 568 (1938).
http://dx.doi.org/10.1017/S0305004100020570
22.
22.J. Bardeen, Phys. Rev. 71, 717 (1947).
http://dx.doi.org/10.1103/PhysRev.71.717
23.
23.J. I. Pankove and H. Schade, Appl. Phys. Lett. 25, 53 (1974).
http://dx.doi.org/10.1063/1.1655276
24.
24.E. H. Rhoderick and R. H. Williams, Metal—Semiconductor Contacts, 2nd ed. (Oxford, U.K.: Clarendon, 1988), p. 98.
25.
25.F. A. Padovani and R. Stratton, Solid-State Electron. 9, 695 (1966).
http://dx.doi.org/10.1016/0038-1101(66)90097-9
26.
26.J. H. Werner and H. H. Güttler, J. Appl. Phys. 69, 1522 (1991).
http://dx.doi.org/10.1063/1.347243
27.
27.A. Kumar, S. Nagarajan, M. Sopanen, V. Kumar, and R. Singh, Semicond. Sci. Technol. 30, 105022 (2015).
http://dx.doi.org/10.1088/0268-1242/30/10/105022
28.
28.A. Kumar, M. Latzel, S. Christiansen, V. Kumar, and R. Singh, Appl. Phys. Lett. 107, 093502 (2015).
http://dx.doi.org/10.1063/1.4929829
29.
29.W. Gotz, N. M. Johnson, D. P. Bour, C. Chen, H. Liu, C. Kuo, and W. Imler, Mater. Res. Soc. Symp. Proc. 395, 443 (1996).
http://dx.doi.org/10.1557/PROC-395-443
30.
30.P. Hacke, T. Detchprohm, K. Hiramatsu, N. Sawaki, K. Tadatomo, and K. Miyake, J. Appl. Phys. 76, 304 (1994).
http://dx.doi.org/10.1063/1.357144
31.
31.K. Mizuno, M. Izaki, K. Murase, T. Shinagawa, M. Chigane, M. Inaba, A. Tasaka, and Y. Awakura, J. Electrochem. Soc. 152, C-179 (2005).
http://dx.doi.org/10.1149/1.1862478
32.
32.A. E. Rakhshani, J. Appl. Phys. 69, 2290 (1991).
http://dx.doi.org/10.1063/1.348709
33.
33.A. Soon, M. Todorova, B. Delley, and C. Stampfl, Phys. Rev. B 75, 125420 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.125420
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/1/10.1063/1.4939936
Loading
/content/aip/journal/adva/6/1/10.1063/1.4939936
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/1/10.1063/1.4939936
2016-01-11
2016-09-30

Abstract

Current-voltage (I-V) measurements combined with analytical calculations have been used to explain mechanisms for forward-bias current flow in Copper(Cu)Schottky diodes fabricated on Gallium Nitride(GaN)epitaxial films. An ideality factor of 1.7 was found at room temperature (RT), which indicated deviation from thermionic emission (TE) mechanism for current flow in the Schottky diode. Instead the current transport was better explained using the thermionic field-emission (TFE) mechanism. A high barrier height of 1.19 eV was obtained at room temperature. X-ray photoelectron spectroscopy(XPS) was used to investigate the plausible reason for observing Schottky barrier height (SBH) that is significantly higher than as predicted by the Schottky-Mott model for Cu/GaN diodes.XPS measurements revealed the presence of an ultrathin cuprous oxide (CuO) layer at the interface between Cu and GaN. With CuO acting as a degenerate p-type semiconductor with high work function of 5.36 eV, a high barrier height of 1.19 eV is obtained for the Cu/CuO/GaN Schottky diode. Moreover, the ideality factor and barrier height were found to be temperature dependent, implying spatial inhomogeneity of barrier height at the metal semiconductor interface.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/1/1.4939936.html;jsessionid=tUvJG5anADl3f8rIsoMbjcXI.x-aip-live-03?itemId=/content/aip/journal/adva/6/1/10.1063/1.4939936&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/1/10.1063/1.4939936&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/1/10.1063/1.4939936'
Right1,Right2,Right3,