Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/1/10.1063/1.4940133
1.
1.K. Sadeghy, A. H. Najafi, and M. Saffaripour, “Sakiadis flow of an upper-convected Maxwell fluid,” Int. J. Nonlinear Mech. 40, 1220-1228 (2005).
http://dx.doi.org/10.1016/j.ijnonlinmec.2005.05.006
2.
2.K. Sadeghy, H. Hajibeygi, and S. M. Taghavi, “Stagnation point flow of upper-convected Maxwell fluids,” Int. J. Non-Linear Mech. 41, 1242--1247 (2006).
http://dx.doi.org/10.1016/j.ijnonlinmec.2006.08.005
3.
3.M. Kumari and G. Nath, “Steady mixed convection stagnation-point flow of upper convected Maxwell fluids with magnetic field,” Int. J. Nonlinear Mech. 44, 1048-1055 (2009).
http://dx.doi.org/10.1016/j.ijnonlinmec.2009.08.002
4.
4.T. Hayat, Z. Abbas, and M. Sajid, “MHD stagnation-point flow of an upper-convected Maxwell fluid over a stretching surface,” Chaos Solitons and Fractals 39, 840-848 (2009).
http://dx.doi.org/10.1016/j.chaos.2007.01.067
5.
5.M. Jamil, C. Fetecau, and M. Imran, “Unsteady helical flows of Oldroyd-B fluids,” Commun. Nonlinear Sci. Numer. Simul. 16, 1378-1386 (2011).
http://dx.doi.org/10.1016/j.cnsns.2010.07.004
6.
6.S. Mukhopadhyay, “Heat transfer analysis of the unsteady flow of a Maxwell fluid over a stretching surface in the presence of a heat source/sink,” Chin. Phys. Let. 29 (2011), DOI: 10.1088/0256-307X/29/5/054703.
http://dx.doi.org/10.1088/0256-307X/29/5/054703
7.
7.T. Hayat, Z. Iqbal, M. Mustafa, and A. Alsaedi, “Momentum and heat transfer of an upper-convected Maxwell fluid over a moving surface with convective boundary conditions,” Nucl. Eng. Des. 252, 242-247 (2012).
http://dx.doi.org/10.1016/j.nucengdes.2012.07.012
8.
8.M. S. Abel, J. V. Tawade, and M. M. Nandeppanavar, “MHD flow and heat transfer for the upper-convected Maxwell fluid over a stretching sheet,” Meccanica 47, 385-393 (2012).
http://dx.doi.org/10.1007/s11012-011-9448-7
9.
9.T. Hayat, M. Mustafa, S. A. Shehzad, and S. Obaidat, “Melting heat transfer in the stagnation-point flow of an upper-convected Maxwell (UCM) fluid past a stretching sheet,” Int. J. Numer. Meth. Fluids 68, 233-243 (2012).
10.
10.S. Shateyi, “A new numerical approach to MHD flow of a Maxwell fluid past a vertical stretching sheet in the presence of thermophoresis and chemical reaction,” Bound. Val. Prob. 196 (2013), doi: 10.1186/1687-2770-2013-196.
http://dx.doi.org/10.1186/1687-2770-2013-196
11.
11.T. Hayat, S. A. Shehzad, and A. Alsaedi, “MHD three-dimensional flow of Maxwell fluid with variable thermal conductivity and heat source/sink,” Int. J. Num. Meth. Heat & Fluid Flow 24, 1073-1085 (2014).
http://dx.doi.org/10.1108/HFF-01-2013-0011
12.
12.A. Mushtaq, M. Mustafa, T. Hayat, and A. Alsaedi, “Effect of thermal radiation on the stagnation-point flow of upper-convected Maxwell fluid over a stretching sheet,” J. Aerosp. Engg. 27, 04014015 (2014).
http://dx.doi.org/10.1061/(ASCE)AS.1943-5525.0000361
13.
13.A. Mushtaq, M. Mustafa, T. Hayat, and A. Alsaedi, “A numerical study for three-dimensional viscoelastic flow inspired by non-linear radiative heat flux,” Int. J. Nonlinear Mech. 80, 83-87 (2016).
http://dx.doi.org/10.1016/j.ijnonlinmec.2015.11.006
14.
14.J. B. J. Fourier, Théorie Analytique De La Chaleur (Paris, 1822).
15.
15.C. Cattaneo, “Sulla conduzionedelcalore,” AttiSemin. Mat. Fis. Univ. Modena Reggio Emilia 3, 83101 (1948).
16.
16.C. I. Christov, “On frame indifferent formulation of the Maxwell–Cattaneo model of finite-speed heat conduction,” Mech. Res. Commun. 36, 481486 (2009).
http://dx.doi.org/10.1016/j.mechrescom.2008.11.003
17.
17.V. Tibullo and V. Zampoli, “A uniqueness result for the Cattaneo–Christov heat conduction model applied to incompressible fluids,” Mech. Res. Commun. 38, 7779 (2011).
http://dx.doi.org/10.1016/j.mechrescom.2010.10.008
18.
18.S. Han, L. Zheng, C. Li, and X. Zhang, “Coupled flow and heat transfer in viscoelastic fluid with Cattaneo-Christov heat flux model,” App. Math. Letters 38, 8793 (2014).
http://dx.doi.org/10.1016/j.aml.2014.07.013
19.
19.R. Cortell, “A numerical tackling on Sakiadis flow with thermal radiation,” Chin. Phys. Letts. 25 (2008), doi:10.1088/0256-307X/25/4/048.
http://dx.doi.org/10.1088/0256-307X/25/4/048
20.
20.S. Sahin and S.G. Sumnu, Physical Properties of Foods (Springer Science Business Media LLC, New York, 2006).
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/1/10.1063/1.4940133
Loading
/content/aip/journal/adva/6/1/10.1063/1.4940133
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/1/10.1063/1.4940133
2016-01-13
2016-10-01

Abstract

Present work studies the well-known Sakiadis flow of Maxwell fluid along a moving plate in a calm fluid by considering the Cattaneo-Christov heat flux model. This recently developed model has the tendency to describe the characteristics of relaxation time for heat flux. Some numerical local similarity solutions of the associated problem are computed by two approaches namely (i) the shooting method and (ii) the Keller-box method. The solution is dependent on some interesting parameters which include the viscoelastic fluid parameter , the dimensionless thermal relaxation time and the Prandtl number Pr. Our simulations indicate that variation in the temperature distribution with an increase in local Deborah number is non-monotonic. The results for the Fourier’s heat conduction law can be obtained as special cases of the present study.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/1/1.4940133.html;jsessionid=bBq9SM87jRXq1Bhzz5F21r4e.x-aip-live-06?itemId=/content/aip/journal/adva/6/1/10.1063/1.4940133&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/1/10.1063/1.4940133&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/1/10.1063/1.4940133'
Right1,Right2,Right3,