Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/1/10.1063/1.4940304
1.
1.A. Fujishima and K. Honda, Nature 238, 37 (1972).
http://dx.doi.org/10.1038/238037a0
2.
2.Z. G. Zou, J. H. Ye, K. Sayama, and H. Arakawa, Nature 414, 625 (2001).
http://dx.doi.org/10.1038/414625a
3.
3.R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, Science 293, 269 (2001).
http://dx.doi.org/10.1126/science.1061051
4.
4.K. Maeda, K. Teramura, D. L. L, T. Takata, N. Saito, Y. Inoue, and K. Domen, Nature 440, 295 (2006).
http://dx.doi.org/10.1038/440295a
5.
5.F. Gao, X. Y. Chen, K. B. Yin, S. Dong, Z. F. Ren, F. Yuan, T. Yu, Z. Zou, and J. M. Liu, Adv. Mater. 19, 2889 (2007).
http://dx.doi.org/10.1002/adma.200602377
6.
6.Z. Xiong, Y. C. Zhao, J. Y. Zhang, and C. G. Zheng, Fuel. Process. 135, 6 (2015).
http://dx.doi.org/10.1016/j.fuproc.2014.09.017
7.
7.K. Nakata, T. Ochiai, T. Murakami, and A. Fujishima, Electrochim. Acta. 84, 103 (2012).
http://dx.doi.org/10.1016/j.electacta.2012.03.035
8.
8.D. Chen and J. Ye, Adv. Funct. Mater. 18, 1922 (2008).
http://dx.doi.org/10.1002/adfm.200701468
9.
9.L. Wang, H. W. Wei, Y. J. Fan, X. Gu, and J. H. Zhan, J. Phys. Chem. C. 113, 14119 (2009).
http://dx.doi.org/10.1021/jp902866b
10.
10.Y. F. Hou, S. J. Liu, J. H. Zhang, X. Cheng, and Y. Wang, Dalton Trans. 43, 1025 (2014).
http://dx.doi.org/10.1039/C3DT52046C
11.
11.L. W. Zhang, Y. J. Wang, H. Y. Cheng, W. Q. Yao, and Y. F. Zhu, Adv. Mater. 21, 1286 (2009).
http://dx.doi.org/10.1002/adma.200801354
12.
12.P. V. Kamat, J. Phys. Chem. Lett. 3, 663 (2012).
http://dx.doi.org/10.1021/jz201629p
13.
13.H. Tong, S. X. Ouyang, Y. P. Bi, N. Umezawa, M. Oshikiri, and J. H. Ye, Adv. Mater. 24, 229 (2012).
http://dx.doi.org/10.1002/adma.201102752
14.
14.J. M. Besson, W. Paul, and A. R. Calawa, Phys. Rev. 173, 699 (1968).
http://dx.doi.org/10.1103/PhysRev.173.699
15.
15.A. A. Andreev, J. Phys. C. 29, 50 (1968).
16.
16.G. Martinez, Phys. Rev. B. 8, 4686 (1973).
http://dx.doi.org/10.1103/PhysRevB.8.4686
17.
17.R. N. Tauber, A. A. Machonis, and I. B. Cadoff, J. Appl. Phys. 37, 4855 (1966).
http://dx.doi.org/10.1063/1.1708150
18.
18.F. J. Meca, M. M. Quintas, and F. J. R. Sanchez, Sens. Actuators. 84, 45 (2000).
http://dx.doi.org/10.1016/S0924-4247(99)00349-0
19.
19.Z. Dashevsky, S. Shusterman, and M. P. Dariel, J. Appl. Phys. 92, 1425 (2002).
http://dx.doi.org/10.1063/1.1490152
20.
20.I. Pop, C. Nascu, V. Ionescu, E. Indrea, and I. Bratu, Thin. Solid. Films. 307, 240 (1997).
http://dx.doi.org/10.1016/S0040-6090(97)00304-0
21.
21.S. Chatterjee and U. Pal, Opt. Eng. 32, 2923 (1993).
http://dx.doi.org/10.1117/12.148123
22.
22.Q. Li, Y. Ding, M. Shao, J. Wu, G. Yu, and Y. Qian, Mater. Res. Bull. 38, 539 (2003).
http://dx.doi.org/10.1016/S0025-5408(02)01052-8
23.
23.T. K. Chaudhuri, Int. J. Eng. Res. 16, 481 (1992).
24.
24.H. Preier, Appl. Phys. 20, 189 (1979).
http://dx.doi.org/10.1007/BF00886018
25.
25.J. Androulakis, I. Todorov, J.Q. He, D.-Y. Chung, V.P. Dravid, and M.G. Kanatzids, J. Am. Chem. Soc. 133, 10920 (2011).
http://dx.doi.org/10.1021/ja203022c
26.
26.S. Johnsen, J. Q. He, J. Androulakis, V. P. Dravid, I. Todorov, D.-Y. Chung, and M. G. Kanatzidis, J. Am. Chem. Soc. 133, 3460 (2011).
http://dx.doi.org/10.1021/ja109138p
27.
27.J. J. Peterson and T. D. Krauss, Nano Lett. 6, 510 (2006).
http://dx.doi.org/10.1021/nl0525756
28.
28.S. Azimi and A. Nezamzadeh-Ejhieh, J. Mol. Catal. A-Chem. 408, 152 (2015).
http://dx.doi.org/10.1016/j.molcata.2015.07.017
29.
29.X. F. Shi, X. Y. Xia, G. W. Cui, N. Deng, Y. Q. Zhao, L. H. Zhuo, and B. Tang, Appl. Catal. B-Environ. 163, 123 (2015).
http://dx.doi.org/10.1016/j.apcatb.2014.07.054
30.
30.L. Liu, Y. F. Wang, W. J. An, J. S. Hu, W. Q. Cui, and Y. H. Liang, J. Mol. Catal. A-Chem. 394, 309 (2014).
http://dx.doi.org/10.1016/j.molcata.2014.07.029
31.
31.K. Ullah, Z. D. Meng, S. Ye, L. Zhu, and W. C. Oh, J. Ind. Eng. Chem. 20, 1035 (2014).
http://dx.doi.org/10.1016/j.jiec.2013.06.040
32.
32.G. Zoltan, K. Zoltan, and K. Akos, Appl. Catal. B-Environ. 179, 583 (2015).
http://dx.doi.org/10.1016/j.apcatb.2015.05.056
33.
33.Y. H. Sang, Z. H. Zhao, M. W. Zhao, P. Hao, Y. H. Leng, and H. Liu, J. Adv. Mater. 27, 363 (2015).
http://dx.doi.org/10.1002/adma.201403264
34.
34.S. Bell 1, G. Will, and J. Bell, Int. J. Hydrogen. Energy. 38, 6938 (2013).
http://dx.doi.org/10.1016/j.ijhydene.2013.02.147
35.
35.L. Li, J. J. Qiu, B. B. Weng, Z. J. Yuan, X. M. Li, X. Y. Gan, and Z. S. Shi, Appl. Phys. Lett. 101, 261601 (2012).
http://dx.doi.org/10.1063/1.4773512
36.
36.J. Sun, Y. Z. Li, Y. Yang, J. L. Bai, and X. J. Zhao, Appl. Surf. Sci. 358, 498 (2015).
http://dx.doi.org/10.1016/j.apsusc.2015.05.112
37.
37.H. W. Huang, J. J. Wang, F Dong, Y. X. Guo, N. Tian, Y. H. Zhang, and T. R. Zhang, Cryst. Growth. Des. 15, 534 (2015).
http://dx.doi.org/10.1021/cg501527k
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/1/10.1063/1.4940304
Loading
/content/aip/journal/adva/6/1/10.1063/1.4940304
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/1/10.1063/1.4940304
2016-01-15
2016-12-04

Abstract

Nanostructured lead chalcogenides (PbX, X = Te, Se, S) were prepared via a simple hydrothermal method. The powder samples were characterized by XRD, SEM, SAED and DRS. Phase composition and microstructure analysis indicate that these samples are pure lead chalcogenides phases and have similar morphologies. These lead chalcogenides display efficient absorption in the UV-visible light range. The photocatalytic properties of lead chalcogenides nanoparticles were evaluated by the photodegradation of Congo red under UV-visible light irradiation in air atmosphere. The Congo red solution can be efficiently degraded under visible light in the presence of lead chalcogenides nanoparticles. The photocatalytic activities of lead chalcogenides generally increase with increasing their band gaps and shows no appreciable loss after repeated cycles. Our results may be useful for developing new photocatalyst systems responsive to visible light among narrow band gapsemiconductors.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/1/1.4940304.html;jsessionid=JlnZ8y6vqXU5bb7KT98MrrSx.x-aip-live-03?itemId=/content/aip/journal/adva/6/1/10.1063/1.4940304&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/1/10.1063/1.4940304&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/1/10.1063/1.4940304'
Right1,Right2,Right3,