Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/1/10.1063/1.4940663
1.
1.V. Garcia and M. Bibes, Nature Communications 5, 5289 (2014).
http://dx.doi.org/10.1038/ncomms5289
2.
2.E. Y. Tsymbal, A. Gruverman, V. Garcia, M. Bibes, and A. Barthélémy, MRS Bulletin 37, 138 (2012).
http://dx.doi.org/10.1557/mrs.2011.358
3.
3.E. Y. Tsymbal and A. Gruverman, Nature Materials 12, 602 (2013).
http://dx.doi.org/10.1038/nmat3669
4.
4.Z. Wen, C. Li, D. Wu, A. Li, and N. Ming, Nature Materials 12, 617 (2013).
http://dx.doi.org/10.1038/nmat3649
5.
5.A. Sokolov, O. Bak, H. Lu, S. Li, E. Y. Tsymbal, and A. Gruverman, Nanotechnology 26, 305202 (2015).
http://dx.doi.org/10.1088/0957-4484/26/30/305202
6.
6.W. Zhang, Y. Gao, L. Kang, M. Yuan, Q. Yang, H. Cheng, W. Pan, and J. Ouyang, Acta Materialia 85, 207 (2015).
http://dx.doi.org/10.1016/j.actamat.2014.10.063
7.
7.A. V. Singh, M. Althammer, K. Rott, G. Reiss, and A. Gupta, Applied Physics Letters 107, 122903 (2015).
http://dx.doi.org/10.1063/1.4931693
8.
8.Z. Wen, X. Qiu, C. Li, C. Zheng, X. Ge, A. Li, and D. Wu, Applied Physics Letters 104, 042907 (2014).
http://dx.doi.org/10.1063/1.4863855
9.
9.L. Pintilie, L. Hrib, I. Pasuk, C. Ghica, A. Iuga, and I. Pintilie, Journal of Applied Physics 116, 044108 (2014).
http://dx.doi.org/10.1063/1.4891255
10.
10.A. P. Chen, F. Khatkhatay, W. Zhang, C. Jacob, L. Jiao, and H. Wang, Journal of Applied Physics 114, 124101 (2013).
http://dx.doi.org/10.1063/1.4821643
11.
11.H. Wu, Y. G. Zhan, and W. Z. Shen, Ferroelectrics 401, 246 (2010).
http://dx.doi.org/10.1080/00150191003677171
12.
12.H. Wu, Y. G. Zhan, H. Z. Xing, and W. Z. Shen, Solid State Communications 149, 802 (2009).
http://dx.doi.org/10.1016/j.ssc.2009.02.027
13.
13.J. P. Velev, C.-G. Duan, J. D. Burton, A. Smogunov, M. K. Niranjan, E. Tosatti, S. S. Jaswal, and E. Y. Tsymbal, Nano Letters 9, 427 (2009).
http://dx.doi.org/10.1021/nl803318d
14.
14.M. K. Niranjan, J. D. Burton, J. P. Velev, S. S. Jaswal, and E. Y. Tsymbal, Applied Physics Letters 95, 052501 (2009).
http://dx.doi.org/10.1063/1.3193679
15.
15.G. Gerra, A. K. Tagantsev, N. Setter, and K. Parlinski, Physical Review Letters 96, 107603 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.107603
16.
16.Y. S. Kim, D. H. Kim, J. D. Kim, Y. J. Chang, T. W. Noh, J. H. Kong, K. Char, Y. D. Park, S. D. Bu, J. G. Yoon, and J. S. Chung, Applied Physics Letters 86, 102907 (2005).
http://dx.doi.org/10.1063/1.1880443
17.
17.J. Junquera and P. Ghosez, Nature 422, 506 (2003).
http://dx.doi.org/10.1038/nature01501
18.
18.C. G. Duan, R. F. Sabirianov, W. N. Mei, S. S. Jaswal, and E. Y. Tsymbal, Nano Letters 6, 483 (2006).
http://dx.doi.org/10.1021/nl052452l
19.
19.H. Lu, X. Liu, J. D. Burton, C. W. Bark, Y. Wang, Y. Zhang, D. J. Kim, A. Stamm, P. Lukashev, D. A. Felker, C. M. Folkman, P. Gao, M. S. Rzchowski, X. Q. Pan, C. B. Eom, E. Y. Tsymbal, and A. Gruverman, Advanced Materials 24, 1209 (2012).
http://dx.doi.org/10.1002/adma.201104398
20.
20.X. W. Wang, X. Wang, W. J. Gong, Y. Q. Zhang, Y. L. Zhu, Z. J. Wang, and Z. D. Zhang, Thin Solid Films 520, 2785 (2012).
http://dx.doi.org/10.1016/j.tsf.2011.12.025
21.
21.J. Q. He, E. Vasco, R. Dittmann, and R. H. Wang, Physical Review B 73, 125413 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.125413
22.
22.D. Park, A. Herpers, T. Menke, M. Heidelmann, L. Houben, R. Dittmann, and J. Mayer, Microscopy and Microanalysis 20, 740 (2014).
http://dx.doi.org/10.1017/S1431927614000518
23.
23.R. F. Negrea, V. S. Teodorescu, and C. Ghica, “Atomic scale elemental mapping of light elements in multilayered perovskite coatings,” Appl. Surf. Sci. 355, 250255 (2015).
http://dx.doi.org/10.1016/j.apsusc.2015.07.106
24.
24.J. P. Buban, K. Matsunaga, J. Chen, N. Shibata, W. Y. Ching, T. Yamamoto, and Y. Ikuhara, Science 311, 212 (2006).
http://dx.doi.org/10.1126/science.1119839
25.
25.P. D. Nellist and S. J. Pennycook, Ultramicroscopy 78, 111 (1999).
http://dx.doi.org/10.1016/S0304-3991(99)00017-0
26.
26.C. L. Jia, J. Rodríguez Contreras, J. Schubert, M. Lentzen, U. Poppe, H. Kohlstedt, K. Urban, and R. Waser, J. Crystal Growth 247, 381 (2003).
http://dx.doi.org/10.1016/S0022-0248(02)01985-1
27.
27.M. Yoshiya, I. Tanaka, K. Kaneko, and H. Adachi, Journal of Physics-Condensed Matter 11, 3217 (1999).
http://dx.doi.org/10.1088/0953-8984/11/16/003
28.
28.K. J. Choi, S. H. Baek, H. W. Jang, L. J. Belenky, M. Lyubchenko, and C.-B. Eom, Advanced Materials 22, 759 (2010).
http://dx.doi.org/10.1002/adma.200902355
29.
29.G. Koster, L. Klein, W. Siemons, G. Rijnders, J. S. Dodge, C.-B. Eom, D. H. A. Blank, and M. R. Beasley, Reviews of Modern Physics 84, 253 (2012).
http://dx.doi.org/10.1103/RevModPhys.84.253
30.
30.H. Jang, J. Brendt, L. N. Patro, M. Martin, and H.-I. Yoo, Physical Review B 89, 144107 (2014).
http://dx.doi.org/10.1103/PhysRevB.89.144107
31.
31.N. Fukushima, K. Sano, T. Schimizu, K. Abe, and S. Komatsu, Applied Physics Letters 73, 1200 (1998).
http://dx.doi.org/10.1063/1.122126
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/1/10.1063/1.4940663
Loading
/content/aip/journal/adva/6/1/10.1063/1.4940663
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/1/10.1063/1.4940663
2016-01-20
2016-10-01

Abstract

Aberration corrected scanning transmission electron microscopy is used to directly observe atom columns in an epitaxial BaTiOthin film deposited on a 3.6 nm-thick SrRuOelectrode layer above an SrTiO (001) substrate. Compositional gradients across the heterointerfaces were examined using electron energy-loss spectroscopy techniques. It was found that a small amount of Ba and Ti had diffused into the SrRuO layer, and that this layer contained a non-negligible concentration of oxygen vacancies. Such point defects are expected to degrade the electrode’s electronic conductivity drastically, resulting in a much longer screening length. This may explain the discrepancy between experimental measurements and theoretical estimates of the ferroelectric critical thickness of a BaTiOferroelectric barrier sandwiched between metallic SrRuOelectrodes, since theoretical calculations generally assume ideal (stoichiometric) perovskite SrRuO.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/1/1.4940663.html;jsessionid=56kf_uj_v0vSTXJICksPK5Uy.x-aip-live-03?itemId=/content/aip/journal/adva/6/1/10.1063/1.4940663&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/1/10.1063/1.4940663&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/1/10.1063/1.4940663'
Right1,Right2,Right3,