Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/1/10.1063/1.4940664
1.
1.T. Mirfakhrai, J. D. W. Madden, and R. H. Baughman, Mater Today 10, 30 (2007).
http://dx.doi.org/10.1016/S1369-7021(07)70048-2
2.
2.P. Brochu and Q. Pei, Macromol. Rapid Commun. 31, 10 (2010).
http://dx.doi.org/10.1002/marc.200900425
3.
3.P. Barber, S. Balasubramanian, Y. Anguchamy, S. Gong, A. Wibowo, H. Gao, H. Ploehn, and H. Loye, Materials 2, 1697 (2009).
http://dx.doi.org/10.3390/ma2041697
4.
4.D. Wang, Y. Bao, J. W. Zha, J. Zhao, Z. M. Dang, and G. H. Hu, Appl. Mater. Interfaces 4, 6273 (2012).
http://dx.doi.org/10.1021/am3018652
5.
5.C. Merlini, G. M. O. Barra, D. P. Schmitz, S. D. A. S. Ramoa, A. Silveira, T. M. Araujo, and Alessandro Pegoretti, Polymer Testing 38, 18 (2014).
http://dx.doi.org/10.1016/j.polymertesting.2014.06.005
6.
6.P. Barber, S. Balasubramanian, Y. Anguchamy, S. Gong, A. Wibowo, H. Gao, H. J. Ploehn, and H. C. Z. Loye, Materials 2, 1697 (2009).
http://dx.doi.org/10.3390/ma2041697
7.
7.S. Kulanthaisami, D. Mangalaraj, and S. K. Narayandass, European Polymer Journal 31, 969 (1995).
http://dx.doi.org/10.1016/0014-3057(95)00059-3
8.
8.B. V. S. Chandar, V. Veeravazhuthi, S. Sakthivel, D. Mangalaraj, and S. K. Narayandass, Thin Solid Film 348, 122 (1999).
http://dx.doi.org/10.1016/S0040-6090(99)00027-9
9.
9.A. Awadhia, S. K. Patel, and S. L. Agrawal, Progress in Crystal Growth and Characterization of Materials 52, 61 (2006).
http://dx.doi.org/10.1016/j.pcrysgrow.2006.03.009
10.
10.R. J. Sengwa and S. Sankhla, Polymer 48, 2737 (2007).
http://dx.doi.org/10.1016/j.polymer.2007.03.030
11.
11.A. S. Roy, S. Gupta, S. Sindhu, A. Parveen, and P. C. Ramamurthy, Composites 47, 314 (2013).
http://dx.doi.org/10.1016/j.compositesb.2012.10.029
12.
12.W. E. Mahmoud and A. A. Al-Ghamdi, Polym. Int 59, 1282 (2010).
http://dx.doi.org/10.1002/pi.2866
13.
13.D. Bhadra, J. Sannigrahi, B. K. Chaudhuri, and H. Sakata, Polym. Compos 33, 436 (2012).
http://dx.doi.org/10.1002/pc.22136
14.
14.S. Mahendia, A. K. Tomar, and S. Kumar, J. Alloys Compounds 508, 406 (2010).
http://dx.doi.org/10.1016/j.jallcom.2010.08.075
15.
15.A. Hassen, A. M. El Sayed, W. M. Morsi, and S. El-Sayed, J. Appl. Phys. 112, 093525 (2012).
http://dx.doi.org/10.1063/1.4764864
16.
16.P. Dutta, S. Biswas, and S. Kumar, Materials Research Bulletin 37, 193 (2002).
http://dx.doi.org/10.1016/S0025-5408(01)00813-3
17.
17.D. G. Li, C. Chen, W. Rao, W. H. Lu, and Y. H. Xiong, J. Mater. Sci. Mater. Electron. 25, 76 (2014).
http://dx.doi.org/10.1007/s10854-013-1551-1
18.
18.Z. Ye, Y. Jiang, H. Tai, N. Guo, G. Xie, and Z. Yuan, J. Mater. Sci. Mater. Electron. 26, 833 (2015).
http://dx.doi.org/10.1007/s10854-014-2472-3
19.
19.H. Qiu, J. Wang, S. Qi, Z. He, X. Fan, and Y. Dong, J. Mater. Sci. Mater. Electron. 26, 564 (2015).
http://dx.doi.org/10.1007/s10854-014-2435-8
20.
20.Y. Zhao, H. Zhao, C. Liu, Z. Cai, J. Wang, and X. Fu, J. Mater. Sci. Mater. Electron. 26, 3621 (2015).
http://dx.doi.org/10.1007/s10854-015-2878-6
21.
21.T. Zhou, J. W. Zha, Y. Hou, D. Wang, J. Zhao, and Z. M. Dang, Appl. Mater. Interfaces 3, 4557 (2011).
http://dx.doi.org/10.1021/am201454e
22.
22.N. Ni and K. Zhao, Journal of Colloid and Interface Science 312, 256 (2007).
http://dx.doi.org/10.1016/j.jcis.2007.03.073
23.
23.P. K. Bipinbal, T. Teena, J. J. Makkolil, K. Narayanan, and K. N. Sunil, Advanced Science, Engineering and Medicine 7, 492 (2015).
http://dx.doi.org/10.1166/asem.2015.1721
24.
24.K. Das, D. Ray, N. R. Bandyopadhyay, and S. Sengupta, J. Polym. Environ. 18, 355 (2010).
http://dx.doi.org/10.1007/s10924-010-0167-2
25.
25.J. Stejskal and I. Sapurina, Pure Appl Chem 77, 815 (2005).
http://dx.doi.org/10.1351/pac200577050815
26.
26.C. R. Martin, in Handbook of Conducting Polymers, 2nd ed., edited by TA Skotheim, RL Elsenbaumer, and JR Reynolds (M Dekker, New York, 1998), p. 409.
27.
27.R. M. Karim, C. J. Lee, Y. T. Park, and M. S. Lee, Synth Met. 151, 131 (2005).
http://dx.doi.org/10.1016/j.synthmet.2005.03.012
28.
28.A. Varesano, L. Dall’Acqua, and C. Tonin, Polym Degrad Stab 89, 125 (2005).
http://dx.doi.org/10.1016/j.polymdegradstab.2005.01.008
29.
29.M. Paligová, J. Vil_cáková, P. Sáha, V. Krěsálek, J. Stejskal, and O. Quadrat, Physica A 335, 421 (2004).
http://dx.doi.org/10.1016/j.physa.2003.12.002
30.
30.H. Dong, S. Prasad, V. Nayme, Jr., and E. J. Wayne, Chem Mater 16, 371 (2004).
http://dx.doi.org/10.1021/cm0347180
31.
31.T. Badapanda, V. Senthil, S. Anwarb, L. S. Cavalcante, N. C. Batista, and E. Longo, Current Applied Physics 13, 1490 (2013).
http://dx.doi.org/10.1016/j.cap.2013.05.006
32.
32.Q. Li, Q. Z. Xue, X. L. Gao, and Q. B. Zheng, Polymer Letters 3, 769 (2009).
http://dx.doi.org/10.3144/expresspolymlett.2009.95
33.
33.V. Raja, A. K. Sharma, and V. V. R. Narasimha Rao, Materials Letters 58, 3242 (2004).
http://dx.doi.org/10.1016/j.matlet.2004.05.061
34.
34.K. P. Singh and P. N. Gupta, European Polymer Journal 34, 1023 (1998).
http://dx.doi.org/10.1016/S0014-3057(97)00207-3
35.
35.A. Karmakar and A. Ghosh, Current Applied Physics 12, 539 (2012).
http://dx.doi.org/10.1016/j.cap.2011.08.017
36.
36.R. Tamura, E. Lim, T. Manaka, and M. Iwamotoa, J. Appl. Phys. 100, 114515 (2006).
http://dx.doi.org/10.1063/1.2372433
37.
37.Z. M. Dang, L. Wang, Y. Yin, Q. Zhang, and Q. Q. Lei, Adv. Mater 19, 852 (2007).
http://dx.doi.org/10.1002/adma.200600703
38.
38.F. He, S. Lau, H. L. Chan, and J. T. Fan, Adv. Mater 21, 710 (2009).
http://dx.doi.org/10.1002/adma.200801758
39.
39.L. Liu, S. Matitsine, Y. B. Gan, L. F. Chen, L. B. Kong, and K. N. Rozanov, J. Appl. Phys 101, 094106 (2007).
http://dx.doi.org/10.1063/1.2728765
40.
40.J.-K. Yuan, W.-L. Li, S.-H. Yao, Y.-Q. Lin, A. Sylvestre, and Bai, J. Appl. Phys. Lett. 98, 032901 (2011).
http://dx.doi.org/10.1063/1.3544942
41.
41.A. Dimiev, W. Lu, K. Zeller, B. Crowgey, L. C. Kempel, and J. M. Tour, Appl. Mater. Interfaces 3, 4657 (2011).
http://dx.doi.org/10.1021/am201071h
42.
42.C. W. Nan, Prog.Mater. Sci 37, 1 (1993).
http://dx.doi.org/10.1016/0079-6425(93)90004-5
43.
43.J. Liu, C. G. Duan, W. G. Yin, W. N. Mei, R. W. Smith, and J. R. Hardy, J. Chem. Phys. 119, 2812 (2003).
http://dx.doi.org/10.1063/1.1587685
44.
44.G. M. Tsangaris, G. C. Psarras, and N. Kouloumbi, Journal of Materials Science 33, 2027 (1998).
http://dx.doi.org/10.1023/A:1004398514901
45.
45.S. Abdul-Jawad, A. Alnajjar, and M. H. Abdallah, Applied Physics A: Materials Science and Processing 64, 199 (1997).
http://dx.doi.org/10.1007/s003390050464
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/1/10.1063/1.4940664
Loading
/content/aip/journal/adva/6/1/10.1063/1.4940664
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/1/10.1063/1.4940664
2016-01-20
2016-09-27

Abstract

Cost effective, high performance dielectriccomposites based on polyvinyl alcohol, cellulose fibers and polyaniline were prepared and the dielectric properties were studied as a function of fiber content, fiber dimensions and polyaniline content over a frequency range of 40 Hz to 30 MHz. The short cellulose fibers were size-reduced to micro and nano levels prior to coating with polyaniline. Fiber surface was coated with Polyaniline(PANI) by an in situ polymerization technique in aqueous medium. The composites were then prepared by solution casting method. Short cellulose fiber composites showed a dielectric constant (DEC) of 2.3 x 105 at 40 Hz. For the micro- and nano- cellulose fiber composites the DEC was increased to 4.5 x 105 and 1.3 x 108, respectively. To gain insight into the inflection point of the dielectric data polynomial regression analysis was carried out. The loss tangent of all the composites remained at less than 1.5. Further, AC conductivity, real and imaginary electric moduli of all the composites were evaluated. PVA nanocomposite attained an AC conductivity of 3 S/m. These showed that by controlling the size of the fiber used, it was possible to tune the permittivity and dielectric loss to desired values over a wide range. These novel nanocomposites, combining high dielectric constant and low dielectric loss, can be effectively used in applications such as high-charge storage capacitors.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/1/1.4940664.html;jsessionid=1LXzFTSmuK2yvJ6f4rqhhuEb.x-aip-live-03?itemId=/content/aip/journal/adva/6/1/10.1063/1.4940664&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/1/10.1063/1.4940664&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/1/10.1063/1.4940664'
Right1,Right2,Right3,