Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/1/10.1063/1.4940754
1.
1.A. K. Geim, Science 324, 1530 (2009).
http://dx.doi.org/10.1126/science.1158877
2.
2.P. Y. Huang, C. S. Ruiz-Vargas, A. M. van der Zande, W. S. Whitney, M. P. Levendorf, J. W. Kevek, S. Garg, J. S. Alden, C. J. Hustedt, Y. Zhu, J. Park, P. L. McEuen, and D. A. Muller, Nature 469, 389 (2011).
http://dx.doi.org/10.1038/nature09718
3.
3.K. Kim, Z. Lee, W. Regan, C. Kisielowski, M. F. Crommie, and A. Zettl, ACS Nano 5, 2142 (2011).
http://dx.doi.org/10.1021/nn1033423
4.
4.O. V. Yazyev and Y. P. Chen, Nature Nanotechnology 9, 755 (2014).
http://dx.doi.org/10.1038/nnano.2014.166
5.
5.J. Coraux, A. T. N’Diaye, C. Busse, and T. Michely, Nano Lett 8, 565 (2008).
http://dx.doi.org/10.1021/nl0728874
6.
6.J. M. Carlsson, L. M. Ghiringhelli, and A. Fasolino, Phys Rev B 84, 165423 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.165423
7.
7.T.-H. Liu, G. Gajewski, C.-W. Pao, and C.-C. Chang, Carbon 49, 2306 (2011).
http://dx.doi.org/10.1016/j.carbon.2011.01.063
8.
8.J. H. Warner, Y. Fan, A. W. Robertson, K. He, E. Yoon, and G. D. Lee, Nano Lett. 13, 4937 (2013).
http://dx.doi.org/10.1021/nl402902q
9.
9.A. W. Cummings, D. L. Duong, V. L. Nguyen, D. V. Tuan, J. Kotakoski, J. E. B. Vargas, Y. H. Lee, and S. Roche, Advanced Materials 26, 5079 (2014).
http://dx.doi.org/10.1002/adma.201401389
10.
10.J. Tersoff, Phys Rev B 37, 6991 (1988).
http://dx.doi.org/10.1103/PhysRevB.37.6991
11.
11.J. Tersoff, Phys Rev Lett 61, 2879 (1988).
http://dx.doi.org/10.1103/PhysRevLett.61.2879
12.
12.K. Albe, K. Nordlund, and R. S. Averback, Physical Review B 65, 195124 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.195124
13.
13.M. Neek-Amal, R. Asgari, and M. R. R. Tabar, Nanotechnology 20, 135602 (2009).
http://dx.doi.org/10.1088/0957-4484/20/13/135602
14.
14.J. Wang, L. Zhu, J. Chen, B. Li, and J. T. L. Thong, Advanced Materials 25, 6884 (2013).
http://dx.doi.org/10.1002/adma.201303362
15.
15.W. D. Luedtke and U. Landman, Physical Review Letters 82, 3835 (1999).
http://dx.doi.org/10.1103/PhysRevLett.82.3835
16.
16.M. Amft, S. Lebegue, O. Eriksson, and N. V. Skorodumova, J Phys: Condens. Matter 23, 395001 (2011).
http://dx.doi.org/10.1088/0953-8984/23/39/395001
17.
17.K. Okazaki-Maeda, Y. Morikawa, S. Tanaka, and M. Kohyama, Surface Science 604, 144 (2010).
http://dx.doi.org/10.1016/j.susc.2009.11.001
18.
18.Y. Okamoto, Chemical Physics Letters 420, 382 (2006).
http://dx.doi.org/10.1016/j.cplett.2006.01.007
19.
19.Q. Zhou, Y. Tang, C. Wang, Z. Fu, and H. Zhang, Comp. Mater. Sci. 81, 348 (2014).
http://dx.doi.org/10.1016/j.commatsci.2013.08.032
20.
20.Q. Wang, F. Wang, J. Shang, and Y. Zhou, J. Phys: Cond. Mat. 21, 485506 (2009).
http://dx.doi.org/10.1088/0953-8984/21/48/485506
21.
21.T. Zhang, L. Zhu, S. Yuan, and J. Wang, Chem. Phys. Chem. 14, 3483 (2013).
22.
22.L.-J. Zhou, Z. F. Hou, and L.-M. Wu, J. Phys. Chem. C 116, 21780 (2012).
http://dx.doi.org/10.1021/jp304861d
23.
23.A. Staykov, Y. Ooishi, and T. Ishihara, Journal of Physical Chemistry C 118, 8907 (2014).
http://dx.doi.org/10.1021/jp410775n
24.
24.D. H. Chi, N. T. Cuong, N. A. Tuan, Y.-T. Kim, H. T. Bao, T. Mitani, T. Ozaki, and H. Nagao, Chemical Physics Letters 432, 213 (2006).
http://dx.doi.org/10.1016/j.cplett.2006.10.063
25.
25.S. J. Plimpton, J Comput Phys 117, 1 (1995) http://lammps.sandia.gov.
http://dx.doi.org/10.1006/jcph.1995.1039
26.
26.L. Lindsay and D. A. Broido, Phys Rev B 81, 205441 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.205441
27.
27.D. W. Brenner, Physical Review B 42, 9458 (1990).
http://dx.doi.org/10.1103/PhysRevB.42.9458
28.
28.D. W. Brenner, O. A. Shenderova, J. A. Harrison, S. J. Stuart, B. Ni, and S. B. Sinnott, Journal of Physics: Condensed Matter 14, 783 (2002).
http://dx.doi.org/10.1088/0953-8984/14/4/312
29.
29.I. Fampiou and A. Ramasubramaniam, J. Phys. Chem. C 116, 6543 (2012).
http://dx.doi.org/10.1021/jp2110117
30.
30.E. E. Helgee and A. Isacsson, Phys. Rev. B 90, 045416 (2014).
http://dx.doi.org/10.1103/PhysRevB.90.045416
31.
31.W. Humphrey, A. Dalke, and K. Schulten, J Mol Graphics 14, 33 (1996).
http://dx.doi.org/10.1016/0263-7855(96)00018-5
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/1/10.1063/1.4940754
Loading
/content/aip/journal/adva/6/1/10.1063/1.4940754
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/1/10.1063/1.4940754
2016-01-22
2016-09-29

Abstract

Two model potentials have been evaluated with regard to their ability to model adsorption of single metal atoms on a buckled graphenegrain boundary. One of the potentials is a Lennard-Jones potential parametrized for gold and carbon, while the other is a bond-order potential parametrized for the interaction between carbon and platinum. Metals are expected to adsorb more strongly to grain boundaries than to pristine graphene due to their enhanced adsorption at point defects resembling those that constitute the grain boundary. Of the two potentials considered here, only the bond-order potential reproduces this behavior and predicts the energy of the adsorbate to be about 0.8 eV lower at the grain boundary than on pristine graphene. The Lennard-Jones potential predicts no significant difference in energy between adsorbates at the boundary and on pristine graphene. These results indicate that the Lennard-Jones potential is not suitable for studies of metal adsorption on defects in graphene, and that bond-order potentials are preferable.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/1/1.4940754.html;jsessionid=hBtteBB2AMqUZ19EyGOpXzcO.x-aip-live-06?itemId=/content/aip/journal/adva/6/1/10.1063/1.4940754&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/1/10.1063/1.4940754&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/1/10.1063/1.4940754'
Right1,Right2,Right3,