Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/1/10.1063/1.4940899
1.
1.D. Ahn and S. L. Chuang, Phys. Rev. B 35, R4149 (1987);
http://dx.doi.org/10.1103/PhysRevB.35.4149
1.D. Ahn and S. L. Chuang, IEEE J. Quantum Electron. 23, 2196 (1987).
http://dx.doi.org/10.1109/JQE.1987.1073280
2.
2.C. Gmachl, H. M. Ng, S.-N. G. Chu, and A. Y. Cho, Appl. Phys. Lett. 77, 3722 (2000).
http://dx.doi.org/10.1063/1.1332108
3.
3.C. Gmachl, H. M. Ng, and A. Y. Cho, Appl. Phys. Lett. 79, 1590 (2001).
http://dx.doi.org/10.1063/1.1403277
4.
4.K. Kishino, A. Kikuchi, H. Kanazawa, and T. Tachibana, Appl. Phys. Lett. 81, 1234 (2002).
http://dx.doi.org/10.1063/1.1500432
5.
5.N. Iizuka, K. Kaneko, and N. Suzuki, Appl. Phys. Lett. 81, 1803 (2002).
http://dx.doi.org/10.1063/1.1505116
6.
6.L. Nevou, M. Tchernycheva, F. H. Julien, F. Guillot, and E. Monroy, Appl. Phys. Lett. 90, 121106 (2007).
http://dx.doi.org/10.1063/1.2715001
7.
7.F. R. Giorgetta, E. Baumann, F. Guillot, E. Monroy, and D. Hofstetter, Electron. Lett. 43, 185 (2007).
http://dx.doi.org/10.1049/el:20073458
8.
8.P. K. Kandaswamy, H. Machhadani, C. Bougerol, F. H. Julien, and E. Monroy, Appl. Phys. Lett. 95, 141911 (2009).
http://dx.doi.org/10.1063/1.3242345
9.
9.F. Guillot, E. Bellet-Amalric, E. Monroy, M. Tchernycheva, L. Nevou, L. Doyennette, F. H. Julien, L. S. Dang, T. Remmele, M. Albrecht, T. Shibata, and M. Tanaka, J. Appl. Phys. 100, 044326 (2006).
http://dx.doi.org/10.1063/1.2335400
10.
10.H. Akabli, A. Almaggoussi, A. Abounadi, A. Rajira, K. Berland, and T. G. Andersson, Superlattices and Microstructures 52, 70 (2012).
http://dx.doi.org/10.1016/j.spmi.2012.04.012
11.
11.X. Y. Liu, T. Aggerstam, P. Holmstrom, S. Lourdudoss, and T.G. Andersson, in 17th International Vaccum Congress and 13th International Conference on Surface Science (Stockholm, 2007).
12.
12.R. Butté, J.F. Carlin, E. Feltin, M. Gonschorek, S. Nicolay, G. Christmann, D. Simeonov, A. Castiglia, J. Dorsaz, H.J. Buehlmann, S. Christopoulos, G. Baldassarri Hoger von Hogersthal, A.J.D. Grundy, M. Mosca, C. Pinquier, M.A. Py, F. Demangeat, J. Frandon, P.G. Lagoudakis, J.J. Baumberg, and N. Grandjean, J. Phys. D 40, 6328 (2007).
http://dx.doi.org/10.1088/0022-3727/40/20/S16
13.
13.R. Butté, E. Feltin, J. Dorsaz, G. Christmann, J.F. Carlin, N. Grandjean, and M. Ilegems, Jpn J. Appl. Phys. 44, 7207 (2005).
http://dx.doi.org/10.1143/JJAP.44.7207
14.
14.S. Nicolay, J.-F. Carlin, E. Feltin, R. Butté, M. Mosca, N. Grandjean, M. Ilegems, M. Tchernycheva, L. Nevou, and F.H. Julien, Appl. Phys. Lett. 87, 111106 (2005).
http://dx.doi.org/10.1063/1.2045559
15.
15.C. Sirtori, F. Capasso, J. Faist, and S. Scandolo, Phys. Rev. B 50, 8663 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.8663
16.
16.J.M. Li, Y.W. Lu, X.X. Han, J.J. Wu, X.L. Liu, Q.S. Zhu, and Z.G. Wang, Physica E 28, 453 (2005).
http://dx.doi.org/10.1016/j.physe.2005.05.057
17.
17.V. D. Jovanović, Z. Ikonić, D. Indjin, P. Harrison, V. Milanovic, and R. A. Soref, J. Appl. Phys. 93, 3194 (2003).
http://dx.doi.org/10.1063/1.1556177
18.
18.A. Bykhovski, B. Gelmont, and S. Shur, Appl. Phys. Lett. 63, 2243 (1993).
http://dx.doi.org/10.1063/1.110540
19.
19.M. Helm, in Intersubband Transitions in Quantum Wells: Physics and Device Applications I, edited by H.C. Liu and F. Capasso (Academic Press, San Diego, 2000).
20.
20.J. Radovanović, V. Milanović, Z. Ikonić, D. Indjin, V. Jovanović, and P. Harrison, IEEE J. Quant. Electron 39, 1297 (2003).
http://dx.doi.org/10.1109/JQE.2003.817584
21.
21.H. P. Maruska and J. J. Tietjen, Appl. Phys. Lett. 15, 327 (1969).
http://dx.doi.org/10.1063/1.1652845
22.
22.I. Vurgaftman and J. R. Meyer, J. Appl. Phys. 94, 3675 (2003).
http://dx.doi.org/10.1063/1.1600519
23.
23.K. Kim, W. R. L. Lambrecht, and B. Segall, Phys. Rev. B 53, 16310 (1996).
http://dx.doi.org/10.1103/PhysRevB.53.16310
24.
24.M. Suzuki, T. Uenoyama, and A. Yanase, Phys. Rev. B 52, 8132 (1995).
http://dx.doi.org/10.1103/PhysRevB.52.8132
25.
25.W. W. Chow, M. Hagerott, A. Gimdt, and S. W. Koch, IEEE J. Select. Topics Quantum Electron. 4, 514 (1998).
http://dx.doi.org/10.1109/2944.704111
26.
26.M. Kumagai, S. L. Chuang, and H. Ando, Phys. Rev. B 57, 15303 (1998).
http://dx.doi.org/10.1103/PhysRevB.57.15303
27.
27.V. W. L. Chin, T. L. Tansley, and Osotchan, J. Appl. Phys. 75, 7365 (1994).
http://dx.doi.org/10.1063/1.356650
28.
28.G. Martin, A. Botchkarev, A. Rockett, and H. Morkoç, Appl. Phys. Lett. 68, 2541 (1996).
http://dx.doi.org/10.1063/1.116177
29.
29.A. Polian, M. Grimsditch, and I. Grzegory, J. Appl. Phys. 79, 3343 (1996).
http://dx.doi.org/10.1063/1.361236
30.
30.F. Bernardini, V. Fiorentini, and D. Vanderbilt, Phys. Rev. B 56, R10024 (1997).
http://dx.doi.org/10.1103/PhysRevB.56.R10024
31.
31.S.-H. Park, Y.-T. Moon, D.-S. Han, J. S. Park, M.-S. Oh, and D. Ahn, Appl. Phys. Lett. 99, 181101 (2011).
http://dx.doi.org/10.1063/1.3657141
32.
32.M. Marques, L. K. Teles, L. M. R. Scolfaro, J. R. Leite, J. Furthmüller, and F. Bechstedt, Appl. Phys. Lett. 83, 890 (2003).
http://dx.doi.org/10.1063/1.1597986
33.
33.P. K. Kandaswamy, F. Guillot, E. Bellet-Amalric, E. Monroy, L. Nevou, M. Tchernycheva, A. Michon, F. H. Julien, E. Baumann, F. R. Giorgetta, D. Hofstetter, T. Remmele, M. Albrecht, S. Bilner, and Le Si Dang, J. Appl. Phys. 104, 093501 (2008).
http://dx.doi.org/10.1063/1.3003507
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/1/10.1063/1.4940899
Loading
/content/aip/journal/adva/6/1/10.1063/1.4940899
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/1/10.1063/1.4940899
2016-01-25
2016-09-30

Abstract

Intersubband transition energies in the conduction band for strain-compensated InGaN/AlInN quantum well(QW)structures were investigated as a function of strain based on an effective masstheory with the nonparabolicity taken into account. In the case of an InGaN/AlInN QWstructure lattice-matched to GaN, the wavelength is shown to be longer than 1.55 . On the other hand, strain-compensated QWstructures show that the wavelength of 1.55 m can be reached even for the QWstructure with a relatively small strain of 0.3 %. Hence, the strain-compensated QWstructures can be used for telecommunication applications at 1.55 m with a small strain, compared to conventional GaN/AlN QWstructure.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/1/1.4940899.html;jsessionid=aJRHRvDmMNZDIgYklPMaGaFG.x-aip-live-02?itemId=/content/aip/journal/adva/6/1/10.1063/1.4940899&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/1/10.1063/1.4940899&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/1/10.1063/1.4940899'
Right1,Right2,Right3,